《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
《微积分溯源:伟大思想的历程》 本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的"小书"。本书适合中学以上水平的数学爱好者、学生和教师阅读。 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
《微分几何与积分几何(英文版)》分为四部分:PartⅠWhatisGeometryandDifferentialGeometry;PartⅡLecturesonIntegralGeometry;PartⅢDifferentiableManifolds;PartⅣLectureNotesonDifferentiableGeometry。《微分几何与积分几何(英文版)》内容包括:WhatIsGeometry;LecturesonIntegralGeometry;MultilinearAlgebra;DifferentiableManifolds;ExteriorDifferentialForms;AffineConnections;RiemannianManifolds;ReviewofSurfaceTheory;MinimalSurfaces;PseudosphericalSurface等。
《微分几何专题(英文版)》包含了陈省身先生有关微分几何文章的选集以及他在普林斯顿高等研究院的一些讲义,大部分未公开出版或是只在小范围内发表过。陈省身是现代微分几何之父,《微分几何专题(英文版)》给读者展示了微分几何与其他学科如拓扑学和李群联系的广阔前景,作者对各个学科联系的把握非常精准并且正中要点。陈省身曾在《Atiyah选集》的前言中说过:“无论新的东西如何被改进或者精化,但原始的文章总是直接和达要点……”《微分几何专题(英文版)》对想学习现代微分几何的初学者非常有价值,也对专家们重新思考微分几何有益。
本书利用调和分析的现代理论,特别是可微函数空间的各种实变刻画、三代C-Z奇异积分算子理论、Fourier限制型估计、Littlewood-Paley理论等应用到非线性偏微分方程的研究,主要内容涉及奇异积分算子在椭圆边值问题中的应用、抛物型方程的时空估计方法、Littlewood-Paley理论与不可压Navier-Stokes方程、Bourgain的Fourier截断方法与能量归纳法、Tao的I-方法、Keel一Tao的端点型Strichartz估计、驻相方法与振荡积分等在非线性Schrodinger方程与非线性波动方程中的应用,特别是在Bourgain空间的框架下研究了非线性Schrodinger方程与非线性波动方程的低正则性,同时也介绍了在共形变换或其他变换群下的不变量、Morawetz型估计、Tao-相互作用的Morawetz型估计及Morawetz估计的局部化技术。本书可供理工科数学系,应用数学系的高年级学生、研究生、教师以及相关的科学工作者阅读参考。
《常微分方程学习指导》主要内容包括:绪论、初等积分法、线性方程、常系数线性方程、一般理论等。《常微分方程学习指导》既可以作为原的配套参考书,也可以独立阅读,不仅适合高等学校数学专业常微分方程课程的教学使用,还可供其他自学常微分方程理论的读者参考。
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于低年级学生、高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为、习题集,也可作为学习指南,同时还有利于教师备课。
本书结合理工科的特点,介绍了微分方程与非线性动力分支理论的基本知识、基础理论、主要方法及相关应用,有利于学习者较快进入微分方程动力学方向课题的研究。本书的内容包括微分方程简介、一阶微分方程的基本解法、一阶微分方程解的存在定理、高阶微分方程、微分方程组、稳定性与极限环、偏微分方程、非线性动力、时滞微分方程、Matlab求解微分方程与绘图、重要术语的汉英对照及习题答案与提示等方面的内容。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
关于孤子(也称孤立子)理论中双线性方程的研究,国际上十分活跃,本书主要介绍处理双线性方程的技巧——“直接方法”。作者结合自己多年的研究成果,细致深入地阐述了求解非线性偏微分方程的解的过程,“广田方法”的要点,以及如何用Pfaff式统一显式表示多孤子解,由此提出了孤子方程可以看成Pfaff式恒等式的新观点。全书共分4章。章详细地描述“直接方法”的要点,以及用“直接方法”求解偏微分方程解的过程。第2章引入需要使用的数学工具,特别是行列式和Pfaff式理论,通过实例,深入浅出地介绍这些方面所涉及的技巧。第3章从直接方法的角度,讨论孤立子方程的数学结构。第4章详细讨论双线性Backlund变换。 本书可供高等院校和科研机构的数学、物理、力学、光学等专业高年级大学生、研究生和教师阅读,也可供从事非线性科学、理论物理、
本书主要内容包括:Differential forms I、Differential forms II、Tensor products、Metrics、Yang-Mills connections、Linear connections、Curvature等。
本书论述了由线性常微分算式在空间L2上所生成的线性算子的谱理论,及其亏指数及判定、自伴延拓、谱染特点、谱分解等,有限区间情形给出Liouville、Sturm和泛函分析三种处理.无限区间情形,详细讨论了二阶Smrm-Liouville算子经典的Weyl理论、极限点、圆的判别、自伴延拓的谱分解与Titchmarsh按特征函数的展开。 本书可供高等院校数学系本科生、研究生、教师及科研人员阅读参考。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
本书主要内容包括:Differential forms I、Differential forms II、Tensor products、Metrics、Yang-Mills connections、Linear connections、Curvature等。