这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《论语读记》是对《论语》逐篇逐章逐句逐字进行注释、翻译、解读的学术著作。全书约23万字,每篇有 题解 ,概括大意。每章分为 原文 注释 译文 读记 四个部分。笔者自上个世纪80年代于大学课堂上学习《论语》以来,隔上几年又重温一次,每一次读《论语》都有新的认识和体会,真正是常读常新,断断续续形成了若干心得札记,近两年进行系统整理,经过三次较大的修改,遂成此书。坊间注译解读《论语》的书可谓汗牛充栋,但不少读本随意性太大甚至臆说乱解,把一部忧国忧民忧人类的伟大思想著作或弄成鸡汤读物,或弄成管理秘籍,或弄成谋略法则,这类的解读可以说离题太远。笔者试图从原文出发,尽可能准确地读懂《论语》原意,并从人生和现实出发,探寻《论语》对人生对现实的意义。为此,笔者在选择参考书时坚决舍弃某些讲坛明星、畅销作
本教材的主要任务是帮助大家学习概率论与数理统计的基本概念,熟悉概率论与数理统计的思维:方式,学会分析与解决实际问题的基本方法。 本教材是在多年教学经验的基础上编写而成的,与其他教材相比,主要有以下特点: 1.遵循认识规律。揭示数学背景 教材中主要概念的介绍大多采用直观引入法,注重概念背景知识介绍。比如,*事件的独立性、两个*变量的独立性、置信区间与假设检验等。 2.加强应用意识的培养,提高综合应用数学知识的能力 例题、习题的选取不仅密切联系生活、生产的实际,而且尽量照顾到各应用学科,使得这些题目不再是纯粹的数学问题,而是工程应用与基本方法的运用并重。 3.注重数学兴趣的培养 避免纯粹的数学推导,把概率论与数理统计写得有用、有趣、有知识。如教材中给出了关于全概率公
内容提要本书以适应统计学教学与统计实践为宗旨,系统地阐述了统计的基本理论、基本知识和基本方法。本书系统性强,结构严谨、布局合理、统计理论与统计实践紧密结合;力求简明易懂,使读者易学易用;力求体现统计知识的整合性、综合性、系统性;力求体系和内容有所突破和创新。全书共15章,包括总论、统计计量、统计资料搜集、统计资料整理、统计比较分析、数据分布特征测度、时间数列分析、统计指数、概率与概率分布、抽样推断、假设检验、方差分析、相关与回归分析、平衡数列分析和空间数列分析等,基本上涵盖了统计学学科体系的主要构成要素。
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“*数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
韩明编著的这本《概率论与数理统计教程》共分十章,前五章是概率论部分,内容包括*事件及其概率、*变量及其分布、多维*变量及其分布、*变量的数字特征及特征函数与极限定理;后五章是数理统计部分,内容包括数理统计的基本概念、参数估计、假设检验、方差分析及回归分析。 本书既有继承国内相关教材传统的部分,又有汲取国外相关教材中流行的直观、灵活的风格,本书图文并茂,注重可读性,着重讲解基本概念、统计思想,强调理论与方法的应用,并把数学实验与数学建模的思想方法融入教材中。 《概率论与数理统计教程》可供高等院校数学类、统计类等有关专业作为本科生教材使用,也可供相关专业的高年级本科生及研究生作为教材使用,还可供相关专业研究者和广大自学者参考。
本书共9章,内容包括:*事件及其概率、*变量及其分布、多维*变量及分布、*变量的数字特征、大数定律与中心极限定理、抽样分布、参数估计、假设检验、回归分析等。 本书在编写思路、体系安排和内容取舍上,*限度地适应各专业学生学习该课程和后续课程的需要;遵循“应用为主,够用为度”的原则,重点放在对概念、定理和方法的直观解释和数学表达上,力求用较少的篇幅使学生了解并掌握概率论与数理统计中的重要概念、理论和方法以及它独有的思维方式,进而为今后在实际问题中的应用打下良好的基础。本书由王波、韩兆秀主编。
关静、张玉环、史道济主编的《应用数理统计( 第2版普通高等教育十一五***规划教材)》是普通 高等教育 十一五 ***规划教材,共分7章,系统 介绍数理统计的基本内容。**章阐述数理统计的基本 概念;第2~4章是数理统计*基本内容;第5、6章是 非参数统计和统计判决函数;第7章是选学内容,包括 异常值、统计诊断及自助法、刀切法等数据处理方法 。其他各章也有一些供选学的内容,如广义*小二乘 估计、广义线性模型、多重比较等。 本书的主要特点是突出统计方法与统计软件包R 的结合。R语言简单易学,R软件免费使用,源代码完 全开放,是培养学生创新能力的工具之一,附录是对R 的简单介绍。此外,构造置信区间的差异度函数也是 国内同类教材中不多见的。 本书可作为数学与应用数学专业本科生的数理统 计教材,由于其不拘泥于数学上的细节,因此也
本书给出了《概率论与数理统计》第5版(韩明主编,同济大学出版社)中大多数习题的详细解答。作为补充,还给出了与原教材中的例题、习题不重复的一些典型例题,选取近些年 全国硕士研究生人学统一考试数学试题 (概率统计部分)的部分 考研真题 ,并给出了详细解答。原教材中有一些计算、画图是用MATLAB软件来实现的,本书中也有个别习题是用该软件来实现的。本书既可以与原教材配套使用,也可以单独使用。本书可作为高等院校各专业(非数学类) 概率论与数理统计 课程的学习辅导书。
本书内容按现行较为通行的该课程大学教材知识范围分章设练习题、习题解答两部分,练习题分为解答题、选择题与填空题三种题型(部分章节除外)。 习题编选力求由浅入深、典型,解答力求简洁,不刻意追求解答的完整。并精选在科学技术和生产上应用性较强的相关问题。 本书可作为高职高专学生和本科学生学习本课程之用,亦可作为教学参考之用。
该书通过重点介绍现代概率论的分析思路与其所用的分析工具之间的相辅相成的关系,相当详细地介绍了现代概率论。第2版中的练习题超过750道,并且对Levy过程、大偏差理论、Banach空间上的Gauss测度、Wiener测度与偏微分方程的关系等添加了许多新的素材。书的第1部分介绍了独立随机变量、中心极限现象、弱收敛性的通用理论及其几种应用,以及关于函数空间上的Gaussian和Markovian测度理论。
统计稀疏学习是计算机科学、统计学和认知科学的交叉领域,是一个新兴的统计学习研究方向,而贝叶斯非参数方法对统计稀疏学习中问题的研究有重要的作用。何岩所著的这本《统计稀疏学习中的贝叶斯非参数建模方法及其应用研究》对贝叶斯非参数方法的构造方法、表达能力和推理机制进行了研究和讨论。在此基础上,研究了贝叶斯非参数方法对统计稀疏学习中稀疏表示、稀疏建模和稀疏降维问题的建模方法和推理过程,并将其应用于具体视觉任务,例如手写数字识别、图像降噪、视频背景剪除等,同时也利用这些视觉任务验证了方法的可行性和有效性。
本书是专为高等院校学生学习概率论与数理统计课程编写的教材,也可作为有关专业的参考书与从事概率论与数理统计相关工作的科研与工程技术人员的参考书。 本书分为上、下册,共10章,上册包括概率论的基本概念;*变量及其分布;多维*变量及其分布;*变量的数字特征;大数定律与中心极限定理及概率论的简单应用等知识。下册包括数理统计的基本概念;样本分布;参数估计;假设检验;线性统计推断以及常用的多元统计方法。 本书每章节末都配有大量的思考题、基本练习,综合练习与自测题,帮助读者循序渐进地牢固地掌握概率论与数理统计知识。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯