这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
科学认为任何事情都有一定的几率,无论是彩票、赌博、选择伴侣、还是计算外星生命存在的可能性。《几率:运气、随机和概率背后的秘密(探索 新知)》是将美国科普杂志《进步科学人》中刊载的主题和内容相近的文章汇集而成,探讨了运气、随机、风险和概率背后的秘密。全书由六部分组成,每部分由4-6篇短文组成,从数学、物理学、哲学、进化生物学等学科的角度阐述了概率、运气在人类诞生、日常生活、科技发明、宇宙未来、物种演化等方面发挥的作用及其科学解释。这是一部有趣的作品,即使对物理学、数学不感兴趣的读者也都能有所收获,是一本让读者喜欢物理、数学、生物学的科普读物。
本书是一本关于可靠性的入门书,讲述可靠性的基本概念,并对常用的寿命分布下的各种可靠性特征的点估计、区间估计、假设检验和加速寿命试验作出较为详尽的叙述,对*近国际上兴起的退化数据处理和贝叶斯分布两个专题作了较多的介绍。读完本书可转入可靠性专业文献阅读。 本书适用于相关专业的研究生和教师,对于可靠性工作者也有着重要的参考价值,本书前五章部分内容可作为本科生选修课教材。
《*过程》是高等院校*过程课程的教材。全书共分七章,内容包括:概率统计、泊松过程、更新过程、离散时间马尔可夫链、连续时间马尔可夫链、布朗运动和应用举例。每小节配有练习题,每章配有总习题,书末附有习题答案或提示,供读者参考。本书对实际应用中常见的*过程作了较为系统的介绍,有许多新的简明讲法,方便读者更好地理解*过程的概念和主要定理。 《*过程》可作为综合大学数学、统计学专业本科高年级*过程课程的教材或教学参考书,也可作为综合大学、高等师范院校、理工科大学和财经院校研究生*过程课程的教材或教学参考书。学习本书的先修课程是高等数学、概率论与数理统计。
c德拉歇利和P·A梅耶的五卷本巨著《概率与位势》是*分析领域中的经典著作。 本书为《概率与位势》的第1卷。前两章包含了完整的积分理论及概率论工作者所需要的该理论的各种变体;章三章介绍了解析集和Choquet窖度的理论:第四章介绍了*过程理论。 本书可作为概率及*分析等相关专业本科生、研究生的教学参考书.也可供概率、金融等领域的科研工作者参考。
由夏宁茂等编著的《概率论与数理统计》是培养学生利用*思维模式看待和处理*现象的一门重要数学基础课程。 通过模拟、函数计算及程序调用,把Excel工具广泛使用于概念的引进和数值计算,帮助学生形象理解新概念,直达核心处理思想;现代概念的描述性融入,现代概率论中的基本概念,例如:“可测性”、“概率空间变换”、“条件数学期望”、“期望积分平均”等科普描述性的引进,可使学生缩短与近代概率论之间的距离;教材重视基本概念与方法,又强调*处理的思想,通过借用MBA的案例分析方法,引导学生灵活运用所学知识,掌握*处理的基本过程;概率统计前后呼应、相互融合,兼顾传统理论与时代精神。
《统计学基础习题集(财会专业高职高专十三五 规划教材)》是根据周礼艳、李畅主编的《统计学基础 》一书编写而成,共包括9套习题、1套期中测试模拟 试题及2套期末测试模拟试题。其中,9套习题分别对 应九大项目,即统计概述、统计调查、统计整理、统 计指标、时间数列、统计指数、抽样推断、相关分析 和回归分析、EXcel在统计中的应用。期中测试模拟 试题设置在统计指标习题之后,对前4个项目的内容进 行总结和复习。2套期末测试模拟试题对9个项目的内 容进行了概括和梳理,对重点和难点部分进行着重练 习。习题集内容丰富全面,理论与实际紧密结合,难 易程度搭配合理,具有较强的实用性。 本书可以作为高职高专经济、管理类专业的辅助 教材,也可以作为经济管理工作者和研究人员的参考 读物。
在数学科学的几乎所有的分支中,不等式常常起着重要的甚至是关键的作用。本书搜集整理了概率论中一批常用的基本不等式,并对其中的绝大多数不等式给出了证明。除了一些熟知的不等式以外,书中对某些不等式还提供了相关的参考文献。
本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。 本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。
本书阐述有不等式约束的参数估计和假设检验的方法和理论,及其在小一乘估计和随机序检验等方面的应用。本书把数学规划的方法和思想用到数理统计中,使得可解决的统计问题的范围进一步扩大。
随着现代科学技术的飞速发展,许多科学研究领域产生了多种复杂数据,复杂数据的统计建模涵盖了许多当代统计分支,推动了当代统计学理论方法的进步与发展,并且其应用层面几乎涉及各领域。具有复杂分层结构的数据在现实生活中很普遍。能完全剖析这类数据,发掘该类数据表象下的潜在规律性对于统计学等科研领域很有意义。本书致力于介绍复杂分层数据分析前沿知识,侧重于系统的理论与算法介绍。内容主要涉及线性分位回归、非参数分位回归、适应性分位回归、可加性分位回归、变系数分位回归、单指数分位回归、分位自回归、复合分位回归、高维分位回归以及贝叶斯分位回归、分层样条分位回归、分层线性分位回归、分层半参数分位回归、复合分层线性分位回归以及复合分层半参数分位回归,等等。
本书包括离散时间Markov链、Poisson过程、更新过程、连续时间Markov链、鞅和金融数学六章内容,涵盖了*过程的核心知识点,涉及大量较新应用。书中内容完全以应用为导向,不涉及高深的理论证明或数学推导,极富思想性作者力求通过展示*过程的实际应用来让学生学习这门学科,因此书中有大量的例子,还有200多道习题来加深读者对内容的理解。 本书可作为各专业本科生或研究生的*过程入门教材,也可作为相关老师和实际工作者的参考书。
This book is primarily based on a one-year course that hasbeen taught for a number of years at Princeton University toadvanced undergraduate and graduate students. During the last yeara similar course has also been taught at the University ofMaryland. We would like to express our thanks to Ms. Sophie Lucas and Prof.Rafael Herrera who read the manu* and suggested manycorrections. We are particularly grateful to Prof. Boris Gurevichfor making many important sug-gestions on both the mathematicalcontent and style. While writing this book, L. Koralov was supported by a NationalSci-ence Foundation grant (DMS-0405152). Y. Sinai was supported bya National Science Foundation grant (DMS-0600996).