本书是实分析课程的,被国外众多(如斯坦福、哈佛等)采用。全书分为三部分:部分为实变函数论,介绍一元实变函数的勒贝格测度和勒贝格积分;第二部分为抽象空间,介绍拓扑空间、度量空间、巴拿赫空间和希尔伯特空间;第三部分为一般测度与积分理论,介绍一般度量空间上的积分,以及拓扑、代数和动态结构的一般理论。书中不仅包含数学定理和定义,而且还提出了富有启发性的问题,以便读者更深入地理解书中内容。第4版主要更新如下:·新增了50%的习题。·扩充了基本结果,包括给出叶果洛夫定理和乌雷松引理的证明。·介绍了博雷尔-利引理、切比雪夫不等式、快速柯西序列及测度和积分所共有的连续性质,以及若干其他概念。
《哲理数学概论(修订版)》论及哲理数学的基本理论及其在人文社会科学、中医学及政治、经济、社会、文化、科学和国家宏观决策等诸多领域的应用,对于落实科学发展观和实现中医现代化及人文社会科学数学化具有十分重要的意义。哲理数学是一门研究自然、社会和人生在深层及在宏观上存在的联系和数量关系的科学,是与传统数学根本不同的新数学。它区别于传统数学的本质特征在于实现了哲学思维与数学思维、定性研究与定量研究、辩证逻辑与形式逻辑、传统文化与现代科学的有机结合。其基本理论包括基本属性论、关联偏差论、中心变量论、辩证关系论、元系统论和阴阳五行新论,其中,前四论是基础,元系统论是核心,主要论及自然系统、社会系统、符号系统诸种属性之本原。 《哲理数学概论(修订版)》适合哲学、数学、中医学和社会科学诸
《集论》共分十章。第壹章至第四章讨论集及其结合,集的势、型及序数,第五章讲集系,内容包括环、体、Borel集及Suslin集;第六章和第七章为点集论,而Borel集及Suslin集在此获得进一步的阐述;第八章为空间的映象;第九章是实函数,第十章是比较近代的材料,内容包括Baire条件及半单叶映象,书末有一个附录,其中所列也是较新材料,但不加证明,作为正文中有关部分的参考。
《近代数学史》从数学的定义、古代数学的遗产、17-18世纪各国数学发展概况、解析几何学、微积分、代数、数论、20世纪的数学、数学家小传等方面介绍了近代数学史。
本书由美国康奈尔大学Rick Durrett教授撰写,书中反映了过去半个多世纪概率论与过程的巨大发展,体现了概率论与其他学科深刻联系以及在工程、经济、金融等方面的应用,继承了美国在概率论教育实践中所积累的经验。本书选材恰当,编排合理,难度适中,兼顾理论与应用,契合当今研究生教学的实际情况,被美国多所高校选为研究生教材。 本书内容包括大数定律、中心极限定理、游动、鞅论、马氏链、遍历定理、布朗运动等。附录部分收录了所需的测度论知识。此书宜为概率统计专业研究生教材。对于学过概率论的学者而言,这也不失为一本出色的参考书。
本书讲解了离散数学问题求解中组合推理和组合建模的方法、思维和运用。主要涉及图论基本概念、覆盖和图着色、搜索算法和网络运算算法等图论知识和方法,以及基本的计数方法、生成函数计数模型、递推关系模型、容斥原理、Polya枚举公式等枚举方法及其应用。作者还介绍了如何用计算机科学地处理枚举,以及逐步受限游戏的理论及其在尼姆游戏中的应用,体现了组合数学的趣味性。本书内容丰富,简明易懂,适合作为高等院校数学专业和计算机专业高年级本科生及研究生的教材,也可供对组合数学有兴趣的相关人员阅读。
不确定理论是概率论、可信性理论、信赖性理论的统称,本书旨在介绍不确定理论的公理化框架,提供处理常见不确定性问题的数学工具.全书共分13章,内容包括测度与积分、概率论、可信性理论、信赖性理论、模糊理论、模糊理论、粗糙理论、粗糙理论、模糊粗糙理论、粗糙模糊理论、双重理论、双重模糊理论、双重粗糙理论.本书所选内容部分反映了不确定理论的研究成果、研究方法和研究动向,在理论体系和方法上均有所创新,构建了不确定理论研讨的平台.本书可作为应用数学、运筹学、管理科学、计算机科学、系统科学、信息科学与工程技术等专业高年级和研究生的,也可作为相关专业的教师和研究人员的参考书。
地理学是一门古老的学科,初仅指地球的绘图与勘查,但发展到今天已经逐渐成为一门范围广泛的学科。本书共十三章,分四篇,囊括自然地理学、人口地理学、文化地理学、城市地理学等分支学科。全书以介绍地理学的发展、核心概念,以及四种系统性传统为开端,四大传统独立成篇。前三篇专门介绍地理学的分支学科,而区域分析传统作为全书后一篇,利用前三种传统和主题,并通过相互参照对其进行综合。相对于其他地理学书籍,本书特别突出了地理学与生活的相关性。对人体有害的天气现象、城市土地利用模式、城市垃圾与危险废物的处理等与我们生活密切相关的问题均有涉及。平实、生动的文字与丰富的实例,使本书极具可读性,读者通过本书亦会获得一种新的思维方式。
由罗斯著的《应用随机过程(概率模型导论1版)/图灵数学统计学丛书》是一部经典的随机过程著作,叙述深入浅出、涉及面广。主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。本版还增加了不带左跳的随机徘徊和生灭排队模型等内容。本书约有700道习题,其中带星号的习题还提供了解答。本书可作为概率论与数理统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业随机过程基础课教材。
《悭悭宇宙:自然界里的形态和造型》作者斯特凡·希尔德布兰特和安东尼·特隆巴引导读者参与探讨自然界里的各种造型、形态的数学基础。《悭悭宇宙:自然界里的形态和造型》从古代演说到原子核时代,为物质世界着于方法的经济原理寻找了几百个证据意指:大自然凭藉能耗悭吝的手段而获得有效的成果。几乎每一页上都有历史性讨论、精致彩绘的图画和鲜明的实例:从原子核到肥皂泡,再到螺旋线和分形。希尔德布兰特和特隆巴未用专业术语,却为非专业读者打开了一条科学探索的通路,表明了当数学用于研究自然界时所能展现的面貌。