庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书是为应用数学专业、数学专业、概率统计专业、信息与计算科学专业本科大学生和非数学专业的硕士生学习数理统计而编写的教材。主要内容有:抽样分布、参数估计、假设检验、方差分析与正交试验设计、线性回归模型。本书每章末附有习题,书后附有答案。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
华应龙的化错教育反映和体现了基础教育的规律与小学教育的特点,也包含了许多非常丰富的教育思想和教学方法。本书设计了非常典型的案例和鲜活的故事,以及华应龙自己的总结与深入思考。所以华应龙的课堂因差错而精彩,让学生充满自信,课堂交往中人与人和谐的人际关系,体现了师生之间的尊重理解和宽容,用自身的和谐发展创造和谐的教学,达到促使每个学生和谐发展的目的。 教学过程的本质就是培养思维。如果只给学生一个公式,让他埋头做题,那是发展不了思维的。“化错”,重在培养学生的思维。同时在化错的过程中,培养学生对数学的兴趣。看看华老师的案例,看到学生饶有兴趣的讨论,你就会感觉到数学“化错教育”的魅力。这样的数学课能让学生不感兴趣吗?没有兴趣就没有学习,有了兴趣就会刻苦学习。 本书没有讲什么教育理论
本书涵盖了概率论与数理统计的知识要点、典型习题、考研真题以及难度稍大的综合习题,汇集了概率论与数理统计的基本解题思路、方法和技巧,融人了编者多年讲授概率论与数理统计课程、辅导考研数学的经验和体会。相信本书会成为读者学习概率论与数理统计的良师益友。
《重温微积分》根据作者多年来为各种不同程度的大学生和研究生讲课及讨论班上报告的内容整理而成。章对极限理论的发展作了历史的回顾。以下六章分别讨论函数、微分学、积分学、傅里叶分析、实分析与点集拓扑学基础以及微分流形理论。每一章都强调有关理论的基本问题、基本理论和基本方法的历史的背景,其与物理科学的内在联系,其现代的发展与陈述方式特别是它与其他数学分支的关系。同时对一些数学和物理学中重要的而学生常常不了解的问题作了阐述。因此,它涉及了除微积分以外的许多数学分支:主要有实和复分析、微分方程、泛函分析、变分法和拓扑学的某些部分。同样对经典物理学-牛顿力学和电磁学作了较深入的讨论。其目的则是引导学生去重新审视和整理自己已学过的数学知识,并为学习新的数学知识——例如数学物理做准备。 《
《过程基础(原书第2版)》包括离散时间Markov链、Poisson过程、更新过程、连续时间Markov链、鞅和金融数学六章内容,涵盖了过程的核心知识点,涉及大量较新应用,书中内容完全以应用为导向,不涉及高深的理论证明或数学推导,极富思想性作者力求通过展示过程的实际应用来让学生学习这门学科,因此书中有大量的例子,还有200多道习题来加深读者对内容的理解。
《成分分析中的数理统计及不确定度评定概要(全国分析检测人员能力培训委员会NTC系列培训教材)》由臧慕文、柯瑞华编著,本书系《全国分 析检测人员能力培训委员会(NTC)系列培训教材》之一。《成分分析中的数理统计及不确定度评定概要(全国分析检测人员能力 培训委员会NTC系列培训教材)》简要介绍成分分析中的数理统计及不确定度评定。全书共分6个部分,内容包括“数理统计中的一些基本概念”,“ 分析测试数据的基本特性”,“分析测试数据的可靠性检验与分析方法的评价”,“回归分析”,“有效数字与数字修约规则”,“测量不确定度 的评定与表示”等。本书涵盖了从事成分分析技术工作的检测人员需要掌握的数理统计知 识,包括测量结果不确定度评定的基本理论和实践。本书力求内容简明扼要、基础实用,可作为分析检测人员的培训教材。 本书可
《数学圈2》主要分重游数学圈和相约数学圈两部分内容。其中重游数学圈主要介绍了从有理数到度量系统,从加减法到新教曲线,从小达罗的漫画到一个完人以及从柯西初露锋芒到维纳的信;相约数学圈主要介绍了从解释《》到“绝妙的证明”,从过分的自重到数学的本质,从失落的手稿到希尔伯特之死以及从“非常”教授到思想车轮。通过这些内容,可以改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活。
本书是编者总结多年的教学经验和教学研究成果、参考外若干教材,对《微积分教程》进行认真修订而成的。本书概念和原理的表述科学、准确、清晰、平易,语言流畅。例题和习题重视基础训练,丰富且有台阶、有跨度。为了方便教学与自学,在附录中给出了习题答案与补充题的提示与解答,并且补充了微积分概念和术语的索引。另外,在附录A中,按照“发现—猜测—验证—证明”的模式,指导读者以数学软件Mathematica为辅助工具,通过理论、数值和图形各方面的分析研究寻找问题的解答。这些问题紧密结合微积分教学和训练的基本要求,有助于培养学生分析和解决问题的能力。 本书分为上、下两册。上册包括实数和函数的基本概念和性质,极限理论和连续函数,一元函数微积分学,数项级数与函数项级数。下册包括多元函数微分学及其应用,重积分,曲线
本书共分八章,力求语言和叙述简洁精炼。章简述了微分流形的基本内容,是学习后面章节的基础。第二章到第六章是黎曼几何的。依本人的兴趣,第七章讲子流形理论,第八章讲复几何。希望所著之书的内容,既在基础理论上自成体系,又能给读者奠定坚实的基础。
《常微分方程基础(英文版原书第5版)/时代教育国外高校教材精选》介绍了一阶常微分方程、高阶线性方程、幂级数法、Laplace变换法、线性微分方程组、数值方法、非线性方程和现象等常微分方程知识。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。
《科学版研究生教学丛书:过程与应用》共7章,包括概率论补充知识、过程的概念与几类重要的过程、Markov过程、平稳过程、鞅、时间序列分析及小波与时间序列简介等内容。 《科学版研究生教学丛书:过程与应用》广度和深度适宜、论述清晰、深入浅出、循序渐进、便于教学。书中配有数量的典型例题和习题,并给出时间序列分析中若干典型问题的计算机模拟和相应的C语言程序,书后附有习题答案,可供读者参考。 《科学版研究生教学丛书:过程与应用》不仅为不同层次的研究生提供了适应性强且内容具有“弹性”的教科书,还可作为理科本科生的专业课教材,同时也可供广大科技工作者和工程技术人员参考。
《模糊集理论及其应用》系统介绍了模糊集理论及其应用的基本知识和研究方法.全书共分三个部分。部分详细介绍模糊集合的基本理论;第二部分系统介绍了模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与预测、模糊规划、模糊概率和模糊统计等研究领域的基本原理、研究方法及其应用程序;第三部分介绍模糊推理的基本理论与算法,以及模糊控制系统的基本原理。 《模糊集理论及其应用》可作为高等院校数学类本科生,以及经济类、管理类、机械类、计算机科学类、信息科学类等专业高年级本科生和研究生的教材,也可作为工程技术人员的参考书。
《多元统计分析引论》系统论述多元统计分析的基本理论和方法,力求理论与实际应用并重。只要具有一元统计的知识就可阅读《多元统计分析引论》。 《多元统计分析引论》主要内容是:多元正态分布、方差分析、回归分析、因子分析与线性模型、聚类分析和统计量的分布附录中列出了常用的多元分布表。
《开来学于今:复杂性科学纵横论》按照作者的观点,复杂性科学并非一门学科,而是一个庞大学科群,代表整个科学作为系统的一种新的历史形态。所以,作为一本论述复杂性科学的书,不能像信息科学或控制理论那样阐释它的基本概念,建立理论框架,只能是总论性质的,即从科学、科学学、科学哲学、科学史等不同角度探讨复杂性科学蕴育和产生的社会背景、历史条件、发展现状、存在问题和可能走向,除了基本概念的阐释,更应从它的认识论、方法论、逻辑工具、思维方式等方面对一些争论和热点问题展开论述。故名之日纵横论,或日概览,概略观览是也。虽为概览,却也耗尽了我这几年的精力。效果如何,敬候阅者批评。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。