《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
关静、张玉环、史道济主编的《应用数理统计( 第2版普通高等教育十一五***规划教材)》是普通 高等教育 十一五 ***规划教材,共分7章,系统 介绍数理统计的基本内容。**章阐述数理统计的基本 概念;第2~4章是数理统计*基本内容;第5、6章是 非参数统计和统计判决函数;第7章是选学内容,包括 异常值、统计诊断及自助法、刀切法等数据处理方法 。其他各章也有一些供选学的内容,如广义*小二乘 估计、广义线性模型、多重比较等。 本书的主要特点是突出统计方法与统计软件包R 的结合。R语言简单易学,R软件免费使用,源代码完 全开放,是培养学生创新能力的工具之一,附录是对R 的简单介绍。此外,构造置信区间的差异度函数也是 国内同类教材中不多见的。 本书可作为数学与应用数学专业本科生的数理统 计教材,由于其不拘泥于数学上的细节,因此也
本书根据“工科本科数学基础课程教学基本要求”并结合精品课程建设的需要,集编者多年工科概率论与数理统计的教学实践经验编写而成。 本书分三大部分,共10章。其中第1章至第5章为概率论部分,包括概率论的基本概念、*变量及其分布、多维*变量及其分布、*变量的数字特征和大数定律与中心极限定理。第6章至第9章为数理统计部分,包括数理统计的基本概念、参数估计、假设检验和线性回归分析。第10章为数学实验部分。前9章均配备了适量的习题,书后附有各章习题的参考答案及简明提示,第10章为学生提供了自己动手探索式的实验平台,通过实验和回答每个实验结论部分的有关问题,巩同加深对有关理论和方法的理解,这不失为一种有益的探索。 本书体现了“多统计、少概率、重应用”的基本精神,全书结构合理、逻辑清晰、例题习题丰富,
哈罗德·杰弗里(SirHaroldJeffreys,1891~1989年),是英国剑桥大学已故著名物理学家兼应用数学家,他在20世纪30年代相继写出两本著作,即《科学推断》和《概率论》,它们对近几十年来贝叶斯学派的重新兴起有重要作用,值得一读。这本《概率论》侧重对科学方法论主要原则的阐述,旨在为读者提供一种在实践中可以应用、能根据观测数据进行推断而自洽的推理方法。为发展概率论,杰弗里在书中提出六条公理(公理7实为定理9所述乘积规则的推广)、三条约定;还为归纳推理中重要的部分,即根据过去的经验预测未来,提出了八条管辖原则,由此深刻论证了“从经验和数据中获取知识”乃是贝叶斯分析的实质这一观点;杰弗里在本书中还发展了K.皮尔逊的思想,强调“科学的一致性在于其方法而非其内容”,在当代各种新知识、新学科层出不穷的背景下,坚持这一
本教材的主要任务是帮助大家学习概率论与数理统计的基本概念,熟悉概率论与数理统计的思维:方式,学会分析与解决实际问题的基本方法。 本教材是在多年教学经验的基础上编写而成的,与其他教材相比,主要有以下特点: 1.遵循认识规律。揭示数学背景 教材中主要概念的介绍大多采用直观引入法,注重概念背景知识介绍。比如,*事件的独立性、两个*变量的独立性、置信区间与假设检验等。 2.加强应用意识的培养,提高综合应用数学知识的能力 例题、习题的选取不仅密切联系生活、生产的实际,而且尽量照顾到各应用学科,使得这些题目不再是纯粹的数学问题,而是工程应用与基本方法的运用并重。 3.注重数学兴趣的培养 避免纯粹的数学推导,把概率论与数理统计写得有用、有趣、有知识。如教材中给出了关于全概率公
本书共9章,内容包括:*事件及其概率、*变量及其分布、多维*变量及分布、*变量的数字特征、大数定律与中心极限定理、抽样分布、参数估计、假设检验、回归分析等。 本书在编写思路、体系安排和内容取舍上,*限度地适应各专业学生学习该课程和后续课程的需要;遵循“应用为主,够用为度”的原则,重点放在对概念、定理和方法的直观解释和数学表达上,力求用较少的篇幅使学生了解并掌握概率论与数理统计中的重要概念、理论和方法以及它独有的思维方式,进而为今后在实际问题中的应用打下良好的基础。本书由王波、韩兆秀主编。