数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。 本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过的几类主要数学模型进行了归纳总结。
本书是高分子物理的课教材,着重讲授高聚物材料的黏弹性和高弹性,并以相当篇幅介绍高聚物材料在大形变时的屈服行为、断裂现象以及高聚物熔体的流变力学行为,对高分子化学以及塑料、橡胶和纤维类,本书可作为研究生教材。本书也可作为从事高聚物材料、加工、使用的有关工程技术人员的参考书。本书章是专为化学系学生写的有关应力、应变及其相互关系的力学基础知识。从第2章开始以3章的篇幅着重介绍高聚物力学性能的时间依赖性;第5、6章介绍高聚物力学性能的温度依赖性和各种力学转变现象;对高聚物材料特有的高弹性,则辟有专门的章节(第7章)详加讨论。考虑到高聚物材料越来越多地作为结构材料应用于机械、建筑乃至高新技术领域中,第8、9章对有关高聚物材料使用中的屈服、破坏和断裂现象作了较多介绍。一章则是介绍高聚物熔体加工成形