本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
《新编统计基础同步训练/高等职业教育“十二五”规划精品教材·高等职业院校财经类专业系列教材》是根据高职高专“十二五”规划精品教材《新编统计基础》编写的配套教学用书。 《新编统计基础同步训练/高等职业教育“十二五”规划精品教材·高等职业院校财经类专业系列教材》注重培养学生岗位实务操作能力,编排了统计分析方法与技巧的多种形式的练习与训练题。其内容新颖生动、趣味性强,以提高学生学习的积极性、主动性,便于学生更好地掌握所学知识。
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
《数理统计及其在数学建模中的实践(使用MATLAB)》从数理统计分析在数学建模中的应用以及在MATLAB中的实现出发,介绍概率论与数理统计分析的基本概念、典型应用及使用MATLAB进行实际建模分析的基本方法和应用。本书将概率论与数理统计的建模方法与MATLAB典型应用融为一体,既从理论上介绍了数理统计基础的基本原理、数理统计知识在数学建模中的使用方法,又详细讲解了该部分知识在MATLAB环境下的实现方法,并给出了大量的典型实例分析。 《数理统计及其在数学建模中的实践(使用MATLAB)》主要内容包括:利用MATLAB制作统计报告或报表、数据处理与统计作图、统计估计、参数检验、方差分析、回归分析与数据拟合、马尔可夫链、数理统计建模实验设计等。书中从数学建模的角度出发描述了通过数理统计数学建模的一般方法步骤,既有理论推导又详
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
朱顺泉和苏越良编著的《管理运筹建模与求解——基于Excel VBA与MATLAB》向读者介绍常用的管理运筹学模型的建立及其计算机软件的实现方法,主要包括线性规划、整数线性规划、目标规划、动态规划、网络规划、非线性规划、数据包络分析、模拟决策、人工神经网络、遗传算法等模型及使用Excel,ExcelVBA和MATLAB等软件对上述模型进行求解的方法和步骤。 《管理运筹建模与求解——基于ExcelVBA与MATLAB》特点是案例丰富,贴近实际,具有很强的实用性和可操作性,易于读者理解和自学。《管理运筹建模与求解——基于ExcelVBA与MATLAB》可作为经济管理类本科生及攻读MBA、工程硕士等专业学位的研究生学习相关课程的教材或参考书,也可供相关专业人士参考。
《无知的博弈:有限信息下的生存智慧》全书用通俗易懂的语言,结合来自经济、政治、历史和日常生活中的大量例子,生动地展示了在不完全信息局势下个人如何做出的决策。包括如何在不确定环境中决策(与上帝博弈),如何在博弈中操纵信息(信号传递、信号干扰、信息隐藏),如何设计机制去探测对手的类型(信息甄别)。《无知的博弈:有限信息下的生存智慧》充分展现了有限信息下的博弈策略和智慧较量,并让我们更为深刻地洞察到社会生活某些表象背后的真相。
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。 《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程教材、数学建模竞赛培训课程的教材,也可供高校师生和相关科技工作者参考。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》共分13章,內容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案。附录介绍了当今流行的计算化问题的LINGO软件。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
《数学建模》根据作者陈光亭和裘哲勇多年的教学经验编写而成,主要内容包括数学规划与组合优化建模、方程建模、方法建模、模糊和灰色系统建模,以及常用数学软件与算法等,涵盖了数学建模常用的方法和工具。每部分内容安排上不追求知识的系统性和完整性,更多地以大量建模问题实例和涉及面较广的背景素材引出需要的方法,并在此基础上简要介绍相关基础知识和基本方法的使用。各部分内容之间具有相对独立性,有利于教师在教学中根据不同的需求以及教学时数的多少进行取舍。 《数学建模》可作为一般院校大学生 数学建模 课程的教材,也可作为指导大学生数学建模竞赛的培训参考书,以及供相关科技工作者参考使用。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深刻细致的解析与研究。本辑针对2007年及2008年MCM/ICM竞赛的6个题目:冰盖融化问题、数独谜题生成问题、医疗保健系统评估问题、选区划分问题、飞机就座问题以及肾移植问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(辑)》内容新颖、实用性强,目前尚无同类作品。本书可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问题的教师和研究生参考使用。