《数学建模方法进阶》是基于作者多年从事本科生、研究生数学建模以及相关课程教学的经验,综合参考了外数学建模、竞赛论文、有关问题的学术文献等编写而成。全书从数学建模方法论开始,以丰富的实际案例为点,以各类数学方法为线,并包含了一些比较深刻的数学方法和思维方式。《数学建模方法进阶》可以作为高等学校各专业、研究生学习数学建模课程、参加数学建模竞赛的,也可以作为研究人员研究相关课题的参考书。
本教材主要介绍近年来产生发展的多种智能优化算法。包括为人熟知的遗传算法、禁忌搜索算法、模拟退火算法和蚁群优化算法;近年来已成为研究热点的粒子群优化算法;还有尚待普及的捕食搜索算法和动态环境下的进化计算。书中讨论这些算法的产生和发展、算法的基本思想和理论、基本构成、计算步骤和主要的变形以及数值例子和实际应用。为了方便读者学习,各章之后还附有精选的习题、思考题及相关的参考文献。 本教材是为“智能优化方法”这门研究生课程编写的,可作为系统工程、管理工程、计算机、自动化、人工智能以及其他应用优化算法专业的研究生及高年级的本科生教材,也可供相关专业的研究人员和工程技术人员参考。
本教材主要介绍近年来产生发展的多种智能优化算法。包括为人熟知的遗传算法、禁忌搜索算法、模拟退火算法和蚁群优化算法;近年来已成为研究热点的粒子群优化算法;还有尚待普及的捕食搜索算法和动态环境下的进化计算。书中讨论这些算法的产生和发展、算法的基本思想和理论、基本构成、计算步骤和主要的变形以及数值例子和实际应用。为了方便读者学习,各章之后还附有精选的习题、思考题及相关的参考文献。 本教材是为“智能优化方法”这门研究生课程编写的,可作为系统工程、管理工程、计算机、自动化、人工智能以及其他应用优化算法专业的研究生及高年级的本科生教材,也可供相关专业的研究人员和工程技术人员参考。
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
本书共分17部分,介绍了完全信息博弈、混合策略均衡、完全信息展开型博弈:理论;联盟博弈及其核心、完全信息展开型博弈:延伸与讨论、不完全信息展开型博弈、演化均衡等内容。本书对博弈论进行了严谨而又通俗的介绍,是适用于高年级本科生和研究生的入门教材。
"Stochastic optimization in continuous time"(AuthorFwu-RanqChang)is a rigorouut user-friendly book on the application ofstochastic control theory to economics. A distinctive feature ofthe book is that math-ematical concepts are introduced in alanguage and terminology familiar to graduate students ofeconomics.
本书共分17部分,介绍了完全信息博弈、混合策略均衡、完全信息展开型博弈:理论;联盟博弈及其核心、完全信息展开型博弈:延伸与讨论、不完全信息展开型博弈、演化均衡等内容。本书对博弈论进行了严谨而又通俗的介绍,是适用于高年级本科生和研究生的入门教材。
离散事件系统是指其状态变量只在某些离散时间点上发生变化的系统。大多数离散事件系统本质上属于人造系统,即包含人为规则或人为机制的“非物理型”系统。 本书共12章。章概述,从概念上讨论DEVS的内涵及其特征;第2章通过三个简单的实例讨论了DEVS建模与仿真的各个步骤,以便读者了解DEVS建模与仿真的基本要素,还对目前流行的离散事件系统建模与仿真软件进行了介绍;第3章介绍主要的数学基础,即概率论与数理统计的基本知识;第4章介绍变量建模及其检验方法;第5章介绍仿真中产生变量的方法和技术;第6章从系统角度讨论建模与仿真问题;第7章对四类策略,即事件调度法、活动扫描法、三阶段法,以及进程交互法,分别进行了规范化讨论;第8章讨论了单系统仿真运行结果分析及实验设计技术;第9章讨论多系统比较技术,还介绍了基于仿真的优
本书将通过九大卷22个章节包含肥胖基础、营养减肥、饮食减肥、西医减肥、中医减肥、减肥新技术、减肥误区,系统、全面的介绍减肥对于现在人的重要性,它是一部集学习、认知、普及可操作性于一体的热销读物。
本书在全面总结外关于动态多目标优化及其进化算法发展现状、基础理论及实现技术的基础上,着重介绍了作者基于进化计算的动态多目标优化方面的研究成果,主要包括:动态无约束多目标优化进化算法;动态约束多目标优化进化算法;离散时间空间上的动态多目标优化进化算法;基于粒子群算法的动态多目标优化求解方法;基于进化算法求解动态非线性约束优化问题;动态多目标进化算法性能评价指标度量方法;动态多目标优化问题测试集,为便于应用,书后附有部分算法源程序。 本书可供理工科院校计算机、自动化、信息、管理、控制与系统工程等专业的高年级本科生、研究生和教师、科研工作者阅读,也可供自然科学和工程技术领域相关人员参考。
《马尔可夫决策过程理论与应用》从马氏决策的一般理论出发,介绍了马氏决策的基本概念,给出了决策过程的表述方法并介绍了不同准则条件下的基本理论,还给出了作者对一些实际问题的研究心得,为读者提供参考. 《马尔可夫决策过程理论与应用》在《实用马尔可夫决策过程》一书的基础上增加了 Bandit 过程、部分可观察过程、软件可靠性建模分析以及大规模计算方法等章节,为读者提供更为宽阔的视野.
《数学建模方法进阶》是基于作者多年从事本科生、研究生数学建模以及相关课程教学的经验,综合参考了外数学建模、竞赛论文、有关问题的学术文献等编写而成。全书从数学建模方法论开始,以丰富的实际案例为点,以各类数学方法为线,并包含了一些比较深刻的数学方法和思维方式。《数学建模方法进阶》可以作为高等学校各专业、研究生学习数学建模课程、参加数学建模竞赛的,也可以作为研究人员研究相关课题的参考书。
如何提高非线性非高斯动态系统的状态估计和预测的精度是系统辨识、适应控制、模式识别、无线传感网络、通信、经济等领域中都会遇到的问题。粒子滤波提供了解决这一问题的采样递推方法。本书结合作者自身的相关研究工作,全面系统地介绍了粒子滤波的主要概念、基本原理、典型算法、应用技术以及国际上有关研究的新成果和新动向。全书可分为理论篇(包含~4章)和应用篇(包含第5~7章)。章为绪论。第2章给出了动态系统常用的几种滤波方法,主要分析滤波方法的思想,不对算法的适用性进行讨论。第3章介绍了采样与粒子滤波方法,这是一种基于采样滤波思想的Monte—Carlo贝叶斯估计算法,本章还重点介绍算法如何利用序列重采样实现状态递推估计。第4章讨论了粒子滤波算法的改进算法.主要包括针对重采样过程改进算法和针对似然函数选取的改进算法。
离散事件系统是指其状态变量只在某些离散时间点上发生变化的系统。大多数离散事件系统本质上属于人造系统,即包含人为规则或人为机制的“非物理型”系统。 本书共12章。章概述,从概念上讨论DEVS的内涵及其特征;第2章通过三个简单的实例讨论了DEVS建模与仿真的各个步骤,以便读者了解DEVS建模与仿真的基本要素,还对目前流行的离散事件系统建模与仿真软件进行了介绍;第3章介绍主要的数学基础,即概率论与数理统计的基本知识;第4章介绍变量建模及其检验方法;第5章介绍仿真中产生变量的方法和技术;第6章从系统角度讨论建模与仿真问题;第7章对四类策略,即事件调度法、活动扫描法、三阶段法,以及进程交互法,分别进行了规范化讨论;第8章讨论了单系统仿真运行结果分析及实验设计技术;第9章讨论多系统比较技术,还介绍了基于仿真的优