作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》结合大量例子和实际问题,由浅入深地介绍了生物数学中的两个主要领域——种群生物学与传染病学中的数学模型,全书分为单种群模型、物种间相互作用模型、结构种群模型和疾病传播模型4个部分,共10章。 《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》可作为生物学、医学、数学等有关专业的大学本科生和研究生的教材,也可供种群生态学、传染病学或进化论生物学等领域的科研人员参考使用.书中提供的大量实际案例和参考文献,是有关人员难得的资源。
这是一本由数理金融学领域两位专家撰写的关于现代金融经济重要思想的复杂的而又极具可读性的教材。用一种非常清晰而又极具可读性的方式为我们介绍了现代金融市场的结构、背景及理论。共分为三篇。篇主要包括基础证券、金融市场机构、利率的概念、主要的数学模型以及各种测度市场交易风险和回报的方法等内容。第二篇主要讲述期权定价和套期保值,该部分类似的内容实际上在最近关于金融市场的书籍中都有所提及。第三篇主要讲述金融经济学的一个重要主题:利用均衡方法进行资产定价。该部分由于在期权定价和套期保值方面几乎没有直接的应用,因此,它们通常被关于金融数学方面的书籍所忽略,然而,该理论却能对市场参与者的行为以及价格在市场中的形成机理给出定性的认识。它既适用于硕士水平的课程也适用于初级博士的课程。同时,它还适
本书讲述管理科学研究的方法,介绍了数理统计、计量经济、多元统计与运筹优化模型及其应用。本书分为两篇:数理统计、计量经济与多元统计篇包括一些常用的变量分布、参数估计、假设检验、线性回归等一些常用内容和计量经济模型的检验,以及主元分析、因子分析、聚类分析、判别分析等多元统计分析及其应用等内容;运筹优化篇向读者介绍常用的优化模型及共应用,主要包括线性规划模型、整数线性规划模型、非线性规划模型、非线性规划模型、多目标决策模型、神经网络模型以及模拟决策模型及其应用等内容。 本书内容充实,通俗易懂,涉及面广。可作为广大、中专院校各类学生学习数据、模型与决策、商务决策数量方法、管理科学、运筹学、数理统计学、计量经济学、多元统计学等课程的教材或参考书。也可供从事数量经济分析方法的企业管理
本书内容按照数学知识的由浅入深分成了四个部分。基本分析部分介绍了非线性系统的基本概念和基本分析方法;反馈系统分析部分介绍了输入-输出稳定性、无源性和反馈系统的频域分析;现代分析部分介绍了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;非线性反馈控制部分介绍了反馈控制的基本概念的反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步法、基于无源的控制和高增益观测器等。全书已根据作者2011年2月所发勘误表进行了内容更正。 读者对象:本书既可以作为研究生学期非线性系统课程的教材,也可以作为工程技术人员、应用数学专业人员的自学教材或参考书。
本书全面讨论了精算损失模型和精算建模方法,共分5个部分。第2部分至第5部分是全书的核心,汇总了精算模型和精算建模方法2个体系的内容。第2部分除介绍一般损失模型常用的概率分布外,还介绍了保险精算中最基本的索赔频率模型、索赔额模型以及总损失模型,并在此基础上讨论了破产理论模型。随后3个部分的核心主题是精算建模方法,从经验建模方法到参数化(统计)建模,直至第5部分的模型修正方法和模拟方法。本书是北美精算考试当前考试体系课程MLC和C的指定参考书,是从事金融和精算工作的专业人士很有价值的参考书,也可作为高等学校金融和精算方向相关课程的参考。
本书是演化博弈论研究领域的经典著作。1982年,约翰·梅纳德·史密斯因此书的出版被称为演化博弈论之父。在本书中,作者把博弈论的思想纳入到生物演化的分析中,揭示了动物群体行为变化的动力学机制。虽然论述的思想和知识涉及生物学、博弈论和数学等交叉领域,但看似艰深的理论,作者却信手拈来,融精妙思想与优雅文笔于一体,大大增强了本书的可读性,也使其在学界享有盛誉,长销不衰。
《生物数学(第2卷)(第3版)》是近代生物数学方面的名著。第三版,在原来版本的基础上做了全面修订。近年来这个科目的茁壮成长和新知识点的不断涌现,新的版本将原来的一卷集分成上下两卷,扩大了知识容量,第二卷绝大多数是新增知识点。书中对生物学中的反应扩散方程和形态发生学的数学理论及研究成果作了全面介绍,是学习与研究生物数学的一部不可多得的参考书。
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li
数学金融已经成长为一个庞大的分支,故而需要大量的数学工具作为支持。本书同时将金融方法和相关的数学工具以数学的严谨和数学家易于理解的方式加以表达。书中将金融概念如套利机会、容许策略、索取权、期权定价和拖欠和数学理论,如布朗运动、扩散过程和Levy过程等交叉讲述。前半部分讲述了连续路径过程,后半部分进而讲述了不连续过程。扩充参数文献包括大量的参考资料和作者索引,使得读者能够很快找到书中引用资料的来源,这对初学者和相关科研实践人员都是弥足珍贵的。
密码学是建立在复杂的数学基础之上的一门学科。然而,本书未将其编写为数学专著,而足以非数学专业的广大读者为对象,运用通俗易懂的语言,简明扼要地介绍密码学的发展历史、基本理论、古典密码、序列密码、分组密码、公钥密码、数字、密钥管理等主要知识。刈于密码学重要的数学理论,本书在给出其结论的同时采用典型、浅显的实例来解释,小进行数学上的推导和证明。全书共分为9章,每一章末均附有习题,以帮助读者复习本章中的重点内容。本书町作为高等学校非数学专业的密码学与信息安全课程的,特别适合作为信息安全领域存职干部的培训,同时也可作为在信息安全领域从事科学研究、工程开发的广大技术人员的参考书。