数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
内容简介: 本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答. 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助. 本书适合中学生及数学爱好者参阅.
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
本书系统介绍忆阻神经网络的动力学性态分析与同步控制问题的数学建模思想、典型理论方法和主要研究成果。主要内容涉及忆阻神经网络的耗散性与无源性分析、稳定性分析和同步控制方法,也介绍有关耦合忆阻神经网络与分数阶忆阻神经网络同步控制研究成果,并在同步控制分析基础上介绍忆阻神经网络在图像保密通信、信号处理与医学图像处理中的具体应用。本书重点介绍忆阻神经网络动力学与同步控制的理论分析和数值模拟方法,内容丰富全面、方法实用完备,反映了当前国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者系统了解和掌握忆阻神经网络动力学与同步控制的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
本书介绍了计算材料和计算凝聚态物理学中常用的密度泛函理论、程序及应用实例,主要包括材料计算背景介绍;晶体结构和晶体对称性;能带理论和紧束缚近似;密度泛函理论基础;VASP程序基本功能、参数和应用;材料拓扑性质理论和计算实例。《BR》全书分为六章。第1章为绪论,主要介绍材料设计的基本概念、材料数据库的建立和应用、高性能计算和Linux操作系统。第2章为晶体结构和晶体对称性,主要包括晶体点阵、元胞、对称操作、点群、晶系、原子坐标和倒易空间等内容。第3章为电子能带结构,包括布洛赫定理、玻恩-冯·卡门边界条件、本征方程、紧束缚近似及一些简单材料的算例。第4章为密度泛函理论,主要介绍了Hartree方程、Hartree-Fock方程、密度泛函理论基础、Kohn-Sham方程、基组、赝势以及交换关联势等内容。第5章为密度泛函计算程序VASP,主要介绍V
本书系统地介绍集合论、近世代数、点集拓扑、泛函分析、Fourier分析、分布理论、微分几何等近代应用数学的基本内容,及其在自然科学领域中的应用。书中强调对近代数学基本概念的理解、对重要论证方法的思路分析,以培养读者掌握并应用近代应用数学工具解决本专业的实际问题。20世纪初期至今的百余年中,数学科学与自然科学诸领域相辅相成,互相促进,彼此渗透,共同发展,使得数学科学成为当今各个科学领域中不可或缺的重要工具。因此介绍近代应用数学基本内容的教材已成当务之急,本书就起了这样的重要作用。
本书介绍和分析了一些**控制中的数学方法,包含作者近年来的研究成果及其应用。主要内容包括:线性时变系统二次**控制的Riccati矩阵微分方程的迭代求解、稳定系统**控制问题的迭代逼近、线性随机系统二次**控制的Riccati矩阵微分方程的选代分析、线性随机系统H∞控制问题的Riccati矩阵方程的迭代方法、约束**控制问题的倒向微分方程、约束线性系统二次**控制问题的解析解、奇异**控制问题的Gurman摄动方法、**控制问题的Krotov延拓方法、局部时间**控制和仿射解析系统**控制问题的Lie级数方法。
本书系统介绍了非线性系统的动力学行为及其数值分析问题,综述了非线性系统的分岔与混沌的发展历史和研究方法,包含了作者近年来在这一领域取得的一些研究成果。包括五方面内容:非线性系统的分岔和混沌行为简述及其相关研究方法概述;微分方程稳定性与定性理论;分歧及其数值计算方法简介;非线性系统的混沌行为分析;无穷维混沌系统的低模分析及其数值仿真问题。
在排序问题的研究中, 一方面问题模型求解方法的多样性, 另一方面实际的生产和服务需求使得问题新模型不断涌现, 使得经典排序的基本假设被不断突破. 工时可变的排序问题, 是一类非常重要的非经典排序问题.本书介绍了工时可变排序问题的重要性和现实意义, 介绍了三类工时可变的排序问题, 以及在重新排序中的应用. 本书介绍了基本方法、理论和基础知识, 阐述了时间相关的排序问题、工期相关的排序问题、工件加工时间之和相关的排序问题, 以及重新排序在学习或者退化效应中的应用. 研究技术和内容涉及成组技术、资源约束分配、窗时排序、准时排序以及拒绝费用限制等相关的排序模型、问题特性、复杂性分析和优化算法.
本书概述了数学物理微分方程模型中爆破解的数值诊断方法,着重研究如下两方面内容:①如何以可接受的精度获得接近爆破时间的近似数值解;②获得解的爆破时间的分析估计值,并以数值方式获得特定模型的爆破时间的特定值。本书基于Richardson对有效精度阶数的估计,研究了用于诊断数学物理方程爆破解的一类通用数值方法,并将该方法应用于各类常微分方程和偏微分方程。本书所有的例子都配有MatLab代码。其主要目的是为读者提供一个工具包,使他们能够高效地应用所提供的方法(包括软件包)来解决科学工作中出现的其他实际问题。
通过阐述数学模型在生态学的应用和研究,定量化的展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制,以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过杨东方、陈豫编*的《数学模型在生态学的应用及研究(37)》的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。 本书主要内容为:介绍各种各样的数学模型在生态学不同领域的应用,如在地理、地貌、水文和水动力,以及环境变化、生物变化和生态变化等领域的应用。详细阐述了数学模型建
本书作为一部论述生物数学思想的专著,尝试将生物数学思想从其内部打通,以生物数学思想的起源与形成为主线,通过透析生物数学思想演变的内在逻辑,窥觅到它的产生和发展是环环相扣的有机的统一体。本书首先对生物数学的思想体系进行整体梳理。然后把握生物数学思想产生和发展过程中各个阶段的关键点;选择具有代表性的种群动态数学模型的产生和发展过程作为突破口,并详细介绍这类生物数学模型在产生和发展过程中所经历的15种形态;详尽分析生物数学四大分支的起源与形成过程;选择生物数学思想演变过程中的5位代表人物进行个案分析;细致探析生物数学的社会化过程;给出生物数学思想未来发展方向的三点展望。*后,叙述中国生物数学的开拓过程。
现代测量误差模型是统计学热门研究课题之一,并在生物学、医学、传染病学、森林、经济学、金融学和遥感等领域有着广泛的应用.本书主要研究两种测量误差类型:可加测量误差和扭曲测量误差.全书共分8章内容,主要阐述这两种测量误差的线性模型、非线性模型、部分线性模型、变系数模型、单指标模型和部分线性单指标模型、降维模型的估计和统计推断方法,除了介绍这些模型的发展动态,也详细介绍相关研究的一些**的研究成果,使读者对测量误差模型的方法和统计思想有一个较为全面的了解,并起到抛砖引玉的作用.
杨东方、王凤友编著的《数学模型在生态学的应用及研究(33)》通过阐述数学模型在生态学的应用和研究,定量化地展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过该书的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。 此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。 本书主要内容为:介绍各种各样的数学模型在生态学不同领域的应用,如在地理、地貌、水文和水动力以及环境变化、生物变化和生态变化等领域的应用。详细
学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过该书的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。数学模型在生态学不同领域的应用,如在阐述了数学模型建立的背景、数学模型的组成和结构以及其数学模型本书适合气象学、地质学、海洋学、环境学、生物学、生物地球化学、生态学、陆地生态学、海洋生态学和海湾生态学等有关领域的科学工作者和相关学科的专家参阅,也适合高等院校师生作为教学和科研的参考 目录
通过阐述数学模型在生态学的应用和研究,定量化的展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制,以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过该书的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。数学模型在生态学不同领域的应用,如在阐述了数学模型建立的背景、数学模型的组成和结构以及其数学模型本书适合气象学、地质学、海洋学、环境学、生物学、生物地球化学、生态学、陆地生态学、海洋生态学和海湾生态学等有关
《金融中的数值方法和优化(英文)》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化(英文)》的参考价值大大提高。