本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的和应用参考。
矩阵计算不仅是一门数学分支学科,也是众多理工科的重要的数学工具,计算机科学和工程的问题最终都变成关于矩阵的运算。本书主要针对计算机科学、电子工程和计算数学等学科中的研究需求,以各种类型的线性方程组求解为主线进行阐述。内容侧重于分析各种矩阵分解及其应用,而不是矩阵的理论分析。介绍了各类算法在计算机上的实现方法,并讨论了各种算法的敏感性分析。在广度上和深度上较同类教材都有所加强。本书适合相关领域广大研究生与高年级本科生阅读,也可作为这些领域中学者的参考书。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。 本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
本书全面系统地介绍了SAMCEF软件在不同领域应用的基本理论、使用方法和应用实例。全书可分为三个部分:部分介绍SAMCEF软件及其基本使用知识;第二部分以实例详解的方式说明SAMCEF Field建模、线性结构分析、模态分析、热分析、结构非线性分析和机构运动非线性分析等的具体操作和关键技术;第三部分着重介绍SAMCEF转子动力学专业分析软件包SAMCEF Rotor的基本理论和分析技术。通过本书的学习,读者不但能够迅速掌握SAMCEF软件的操作方法,而且能够对具体的工程问题进行独立分析。 本书可作为理工院校相关专业高年级本科生、研究生及教师学习SAMCEF软件的辅导用书,也可作为广大工程技术人员和科研工作者使用SAMCEF软件的参考书。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
本书主要讲解如何利用HyperMesh建立高质量的有限元模型,再以ANSYS作为求解器来解决各类工程问题。全书共16章,包含了HyperMesh有限元网格建模技术、ANSYS高级单元技术、装配体连接技术、静力分析、模态分析、谐响应分析、瞬态动力学分析、响应谱分析、振动分析、几何非线性分析、材料非线性分析、接触非线性分析和多体刚-柔系统动力学分析等内容。作者还针对每个专题精心设计了实例。 本书可作为使用HyperMesh和ANSYS进行工程分析的工程技术人员及相关专业师生的参考用书,也可作为HperMesh和ANSYS软件的教材或培训教材。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础介绍有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土