本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对相关领
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的精确算法与近似算法。
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析,内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中最重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、最短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个最短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本卷包括一元微积分、多元微积分、复变函数、常微分方程、矩阵分析与线性系统、系统辨识、偏微分方程、积分方程共8部分内容。书中从理论与应用方面深入浅出地阐述了各分支中的基本概念、基本理论与基本方法。内容注重背景,强调应用,便于读者加深理解、掌握与应用。本书可供理、工、农、医、经管等领域的广大科技人员,大、中专院校教师、学生及研究生使用。
《守恒律方程的数值方法》总的重点放在研究必要的数学手段,用于发展、分析和成功地运用数值方法求解非线性守恒律系统,特别是包括激波的问题。首先,需要较好地理解这些方程及其解的数学结构,《守恒律方程的数值方法》的第壹部分处理这个理论问题。然后,第二部分更直接地处理数值方法,这一部分的重点也将放在具有广泛应用价值的通用技术上。我非常强调各类格式所用到的潜在思想,而不是极其详细地列出那些最复杂的格式。我的目的是提供足够的背景知识,使得学生可以基于这些必要的技术和理解去跟进目前的研究文献。
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的教材和应用参考。