本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对相关领
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的每一种技术给出了大量的工业实例加以说明。 对某些典型的例子提供了软件(可通过FTP取得),
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的精确算法与近似算法。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从基本理论和
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从基本理论和
Thebookassumesthatthestudentswillhaveaccesstoaputeralgebrasystem.AppendixCdescribesthefeaturesofAXIOM,Maple,Mathematica,andREDUCEthataremostrelevanttothetext.Wedonotassumeanypriorexperiencewitha-puter.However,manyofthealgorithmsinthebookaredescribedinpseudocode,whichmaybeunfamiliartostudentswithnobackgroundinprogramming.AppendixBcon-tainsacarefuldescripLionofthepseudocodethatweuseinthetext.
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中最重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、最短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个最短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书是意大利数学家斐波那契的重要数学著作之一,是一部百科全书式的数学著作,内容涉及算术、代数、几何和问题解决等在13世纪广为人知的数学知识,在世界数学史上占有重要地位。其理论基础是欧几里得的数学,作者对原来的解法及自己的解法都给出了证明,并收集了中世纪时期用于解决日常问题的数学方法及其在商贸、度量衡、货币换算、单利复利计算等各种场合的应用。此外,还有许多趣味数学问题以其丰富的想象力和解答的性展示了数学的魅力。而书中数学问题的东方背景特别引人注目。 本书主要读者对象是数学工作者、科学史工作者、数学教师及数学爱好者。
为了适应“计算物理一科学与工程计算一高性能计算”发展的需要,本书专门为在计算机(尤其是超高速大型计算机)上大规模数值求解抛物型方程各种类型的适定问题而写。本书将在解决实际问题计算过程中可能涉及到的各类问题尽可能地加以叙述,但主要是围绕典型方程所采用的有限差分方法的格式和技巧展开的。力求简明扼要,通俗易懂,学了能用。 本书共分10章,包括:抛物型方程定解问题的提出、有限差分方法的基础知识、求稳定性条件的方法、抛物型方程的差分格式、非线性抛物型方程、高于二阶的抛物型方程和抛物型方程组、退化抛物型方程、抛物型方程有限差分的并行计算、数值计算中的若干问题以及数值计算的实际应用之例。 本书可作为从事与抛物型方程相关的广大科技工作者的使用手册和高等院校的大学生和研究生学习“偏微分方程数值