本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
矩阵计算不仅是一门数学分支学科,也是众多理工科的重要的数学工具,计算机科学和工程的问题最终都变成关于矩阵的运算。 本书主要针对计算机科学、电子工程和计算数学等学科中的研究需求,以各种类型的线性方程组求解为主线进行阐述。内容侧重于分析各种矩阵分解及其应用,而不是矩阵的理论分析。介绍了各类算法在计算机上的实现方法,并讨论了各种算法的敏感性分析。在广度上和深度上较同类教材都有所加强。 本书适合相关领域广大研究生与高年级本科生阅读,也可作为这些领域中学者的参考书。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
《科学计算引论》是为大学高年级本科生和硕士研究生开设数值计算方法或数值分析课程而专门编写的一本教科书。全书共分9章,内容涉及数值分析基础、函数逼近、数值微积分、线性方程组数值解法、非线性方程数值解法、化方法、常微分方程初值问题数值解法、常微分方程边值问题数值解法及偏微分方程数值解法。本书以介绍通用数值算法为基础,同时也引入了当代高性能计算的知识内容。书中既注重算法理论的严谨性,又突出了算法的实际计算,并配备了所有常用算法的matlab程序,从而使算法理论与算法实现形成一体化。此外,本书还配备了量的习题,其中有些是理论分析题,有些是上机实验题。学生通过认真学习本教材、完成其习题可以系统地掌握科学计算知识,并应用于相关专业领域。 《科学计算引论》取材适当,用语深入浅出,通俗易懂,除适合于
“青少年心灵治愈故事系列”,包含了六本书,收录了近四百个精彩的小故事,囊括了勇气、诚信、认知自我、专注、友爱、情绪管理等各个不同的情商培养主题,是暖心的读物,写给正值青春前期,在经历某种程度的迷茫与疼痛的人。 李加臣编著的这本《说话要算数》就是该系列丛书之一,精心选编了数十个精彩的以“诚信”为主题的小故事。这些故事,或出自一些对后世有着深远影响的历史事件,或来自古今中外名圣先哲们的生活片段。书中的每个故事都不长,却以通俗的语言和生动的方式诠释着本来简单的人生真谛与深刻道理。每个故事都有“心灵物语”和“心灵加油站”两个板块,为读者提供了一种阅读引导,这里既阐述了故事的内涵,也给了读者静心思考的空间。每个故事都配有精美插图,美图美文,带领读者走进美好的故事世界。
本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。 全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为本科计算数学专业,也可作为其他理工学科硕士、博士研究生的或参考书。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中最近兴起的粒子群算法处理多目标问题的理论方法与应用示例。 本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性
《经典科学系列:超乎想象的能量》书中探讨了什么是能量,我们为什么需要它以及能量的转换。讲解水也携带着能量,介绍了令你难以捉摸的海洋能量,并进一步介绍了那些从天而降的奇怪能量。《经典科学系列:超乎想象的能量》标题新颖,耐人寻味。书中还配有风趣幽默的插图,使其更富有感染力,吸引力。同时,直白的语言给读者一种亲切的感觉。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。 本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
THE major part of thiook (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which haeen only slightly changed in the present edition.
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.