本书是朗道-栗弗席兹《理论物理学教程》的第八卷,也是该教程中朗道生前参与撰写的*后一卷,书中系统阐述了连续介质的电磁场理论以及物质宏观电学和磁学性质的理论。全书选材独到、论述条理清晰。内容包括导体和介电体的静电学、恒定电流、静磁场、铁磁性与反铁磁性、超导电性、准静态电磁场、磁流体动力学、介质内的电磁波及其传播规律、空间色散、非线性光学、电磁波散射以及快速粒子通过物质等,许多内容为其他书籍所少有。本书可作为理论物理专业的研究生和高年级本科生教学参考书,也可供科研人员和教师参考。
本书主要介绍亚波长尺度电磁波与物质相互作用的新奇现象、物理机理及其在各种电磁学/光学系统中的应用。针对传统光学和电磁学理论存在的原理性障碍,阐述了亚波长尺度突破传统极限的理论和方法,并在此基础上给出了亚波长结构辅助的新电磁学和光学定律。本书是亚波长电磁学学科的部专著,涉及的主要内容是作者多年来从事基础和应用研究的成果体现,也广泛收录了国际上其他著名团队的**结果。
本书讲述电磁波理论的基本原理.全书共9章.第1章为基本方程,第二3章为平面波,讨论均匀介质中的平面波传播、半空间和分层介质的反射和折射以及各向异性介质中本征波的特性第4章分析波导和谐振腔,讨论平行平板、平面介质波导和金属波导管以及介质圆波导中的导行波,并介绍用微扰法处理波导与腔体中波的衰减以及腔壁和介质对谐振频率的影响.第5章简单讨论传输线上波的特性.第6~8章分别讨论辐射、衍射和散射.辐射问题包括基本电偶极子和磁偶极子、线天线和电偶极子阵列特性,并采用互易定理计算半空间界面上的电偶极子辐射.在Huygens原理基础上分析Fresnel和Fraunhofer衍射,并讨论平面互补结构的衍射特性.散射问题给出球和无限长导体圆柱级数解的推导以及远区散射截面公式,介绍用Floquet定理处理周期性表面散射.第9章给出高频近似中的两种重要方法几何
量子霍尔效应是物理学中一个吸引人的美的现象,量子霍尔效应一直以来是研究的热门话题,而且在这个领域大量的理论研究和实验还在继续,玻色子、费米子和任意子都是出版中突出热点话题。在《量子霍尔效应》第2版中,作者使用大篇幅描述一个和双分子层系统结合的内部层相有关的有趣现象。量子霍尔的微观理论是基于不可交换的几何形态形成的。石墨烯的电子动态可以对研究相对论费米子,甚至是超对称量子机制有很重要的作用。
《异向介质电磁理论及应用》以麦克斯韦电磁理论为基础,深入探讨了异向介质的 超常 电磁特性,展示了其在超越自然材料电磁性能极限方面的潜力,聚焦其在电磁场与电磁波的实际应用。《异向介质电磁理论及应用》共6章,涵盖了异向介质的电磁理论基础、异向介质中的电磁波、异向介质的电磁散射、异向介质的电磁隐身、异向介质的电磁辐射,以及异向介质的电磁表征和应用。《异向介质电磁理论及应用》所涉及的是相关领域前沿科学研究的*新进展,从麦克斯韦电磁理论出发,并附有大量设计案例,循序渐进地帮助读者理解异向介质的重要性。
本书主要介绍亚波长尺度电磁波与物质相互作用的新奇现象、物理机理及其在各种电磁学/光学系统中的应用。针对传统光学和电磁学理论存在的原理性障碍,阐述了亚波长尺度突破传统极限的理论和方法,并在此基础上给出了亚波长结构辅助的新电磁学和光学定律。本书是亚波长电磁学学科的部专著,涉及的主要内容是作者多年来从事基础和应用研究的成果体现,也广泛收录了国际上其他著名团队的**结果。
近年来,稳态磁场对人体健康的影响引起了越来越多的关注。在**版中,我们通过7个章节来对本领域进行了介绍,包括磁场参数及其生物学效应的差异,稳态磁场对人体的作用,电磁场生物感应的分子机制,稳态磁场对细胞的影响,稳态磁场对微生物、植物和动物的影响,稳态磁场在癌症治疗中的潜在应用,以及稳态磁场用于磁疗的前景、困难和机遇。在过去几年中,磁生物学领域发展迅速,因此我们在第二版中增加了8个新的章节,包括稳态磁场方向引起的不同生物学效应,生物样品磁学特性,非均匀稳态磁场调控细胞膜电位,稳态磁场对糖尿病及其并发症、骨骼健康、免疫系统、神经系统的影响,以及稳态磁场长期暴露的生物学效应。
非侵入式负荷识别技术作为智能电网需求侧能源管理的基础,在优化电网供求关系、促进节能减排等方面具有广阔的应用前景。本书全面介绍了非侵入式负荷识别的相关的基本理论、关键技术和应用实例。全书分为10章,第1章介绍非侵入式负荷识别的技术背景、相关定义和涉及的关键基础问题;接着分4大部分展开,第一篇介绍非侵入式负荷分解的前处理过程,包括第2章介绍的负荷时序状态变动检测和第3章介绍的用电负荷差异化特征提取;第二篇介绍非侵入式负荷统计识别方法,重点讨论基于模板匹配的负荷识别模型和基于稳态电流分解的负荷识别模型;第三篇介绍用电负荷智能识别方法,包括基于机器学习的负荷识别模型,基于隐含马尔可夫的负荷识别模型和基于深度学习的负荷识别模型;第四篇介绍非侵入式负荷识别在智能用电负荷预测方法中的应用,包括用