本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
数学是理解和探索世界的工具,无论是学生、工程师还是科学家,*有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来*读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
傅里叶变换在物理学和工程中有着广泛的应用,非常重要.本书简要介绍了傅里叶变换的理论和应用,对物理、电气和电子工程以及计算机科学专业的学生来说很有价值. 本书在简要介绍了傅里叶变换的基本思想和原理后,介绍了它在光学、光谱学、电子学和电信等领域的应用,说明其强大功能.本书还介绍了多维傅里叶理论中一些很少被讨论但非常重要的领域,包括对计算机轴向断层扫描的介绍.本书最后讨论了数字化方法,特别是快速傅里叶变换及其应用. 本书还包括一些新颖、有趣的内容,如正弦卷积、连续性、迈克耳孙恒星干涉仪和Van Cittert Zernike定理、Babinet原理和偶极子阵列等.
本书讲述了小学和初中阶段数学学习法、学习习惯和解题思路,针对计算能力提升、知识难点讲解、数学思想应用和培养,为小学和初中阶段家长提升家庭辅助教育水平,以及初中学生实现自学与自练,提供了切实可行、容易上手的方法和思路,解决数学学习和教育中的种种困难,让大家不再盲从和焦虑。本书适合小学和初中阶段的家长和数学教师阅读,亦可作为学生本人提升数学水平的指导。
第一章 基础知识 第一节 计数原理与计数公式 一、加法原理与乘法原理 二、没有重复元素的排列与组合 三、可重复元素的排列与组合 四、相异元素的圆排列 五、利用不定方程解计数问题 六、容斥原理 第二节 抽屉原理 第三节 *原理 第二章 基本方法 第一节 映射法 第二节 算两次方法 第三节 递推数列及其应用 第四节 反证法及其应用 第五节 染色方法 第六节 赋值方法 第七节 局部调整法及其应用 第八节 构造法及其应用 第九节 数学归纳法及其应用 第三章 典例精析 第一节 组合计数问题 第二节 组合几何 第三节 存在性问题 第四节 组合极值 第五节 组合数学综合问题选讲 参考答案
本书以独特的视角呈现线性代数的全貌,*覆盖了线性空间与线性映射、矩阵与行列式、谱理论、欧几里得结构等核心理论,还单独讨论了向量值与矩阵值函数的微积分、动力学、凸集、赋范线性空间、自伴随矩阵的本征值计算等特色专题,理论和应用相结合。每章*有练习,并为部分练习提供解答。书后还有辛矩阵、快速傅里叶变换、洛伦兹群、若尔当标准形等16个附录。
本书是与《统计学(第3版)》配套的学习辅导书。统计学作为一门实践性很强、应用范围很广的方法论学科,只有勤思多练,通过对各种类型习题和实际资料做富于思考性的练习与分析,才能真正领会统计思想,深刻理解和掌握统计学的基本原理、基本技能与基本方法。 为了帮助大家更好地学习和把握这门课程,我们针对统计学教材,根据多年的教学实践,编写了这本学习辅导书。本书包含“本章学习目的要求”“基本知识梳理”“重点难点点拨”“范例解析”和“练习与实践”五个方面内容,旨在引导学生思考、贴近实际,并设计了Excel计算结果输出分析题,有利于提升统计知识的应用与实践能力。 本书可作为经济类和管理类非统计专业本科生的统计学课程教材,也可作为统计学专业本科生的统计学入门教材,还可作为广大经济管理人
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 基本信息 书 名 数学之美 第三版 出版社 人民邮电出版社 作 者 吴军著 出版时间 20200501 I S B N 9787115537973 定价 69 开 本 小16开 152*228 装 帧 平装 版 次 3 字 数 317 (千字) 页 数 340 读者范围 一般读者
作者从三个方面:数、数与式的运算、数学学科阐述了数学概念的来源,以丰富的史料和通俗易懂的语言,通过图文并茂的形式,展示了数学主要概念产生的缘由与发展的历程。之所以写这本书,是因为数学概念是数学的核心内容,数学概念的教学与学习十分重要。但是,数学概念的教学与学习不能成为死记硬背的教条或单纯演算的训练,这样无助于对数学的理解,也无助于培养独立思考能力。教师和学生应该知道数学概念是从哪里来的,又是怎样演化和完善的。要知道,一个数学概念的形成往往需要一个过程,有时是一个极其复杂的过程。这个过程正是数学发展的过程,了解了这个过程可以使人们更加走近数学,正确认识数学;会让我们感到数学是活的东西而不是死板的玩意;进而开拓思维,激发兴趣,更好地学习数学。
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 基本信息 书 名 烧掉数学书:重新发明数学 出版社 湖南科学技术出版社 作 者 【美】杰森·威尔克斯著 出版时间 20201001 I S B N 9787571004071 定价 98 开 本 16开 185*260 装 帧 平装 版 次 1 字 数 360 (千字) 页 数 404 读者范围
方程的导出和定解问题,行波法,分离变量法和特殊函数,积分变换法与GREEN函数法等
本书为“数学糖果”系列的第2册,依然秉承“从发散性的思考中寻找乐趣,从系统性的总结中拓展认知”的原则,结合数学史料、趣味科普知识、实际生活经验,配以丰富的卡通图画,展示数学中的20个知识点。 本书内容包括3部分: 无穷、*不利原则、递推等思维小知识;无理数、杠杆、方程等算术小知识;立体图形、皮克公式、帕普斯定理等几何小知识。 牛顿自述是在真理的海边拾捡漂亮贝壳的孩童。本书在选择知识点时向这个有趣的比喻致敬: 在数学的海边堆积了一些有趣的小石头——书中20个知识点皆与小石头相关。希望在数学的海边漫步的各位读者,可从这堆小石头中收获拾捡钟意之物的乐趣。
数学无处不在,从考试中的计算公式,到物理学、经济学等都有数学的影子。数学让人们的生活更加便利。本书作者以简明的文字、轻松的插图介绍了小学和中学阶段的许多数学基础知识。本书共5章。序章为全书内容的引子,简单介绍了数学的诞生和计数单位等;第1章概括了课本中的一些重要公式;第2章介绍了许多重要的并且常见的数学符号,如+、–、×、÷、=、 、 、△、sin、cos、tan等;第3章介绍了二次函数曲线、正弦定理、余弦定理、三角函数等课本上常见的概念;第4章介绍了日常生活中数学的应用,如根据阳历年份算地支、计算空气湿度等。 本书适合小学高年级学生和中学生阅读。
本书围绕算术运算展开,在强调常规计算方法训练的重要性的基础上,有针对性地介绍了大量颇具特色的计算方法和技巧,具体内容包括20以内的加减法童子功、一位数加减法进阶、多位数加减法计算技巧、一位数的乘法技巧、多位数的乘法技巧以及除法的巧妙计算方法。另外,还介绍了中小学数学学习中常用的单位换算方法和其他重要内容。书中所涉及的速算和巧算原理通俗易懂,方法简洁实用,例题丰富,针对性强,可以帮助你快速提升基本算术运算能力。 本书可供中小学生阅读,也可供对速算感兴趣的读者参考。
内容简介 眼睛是人们感知世界的窗口,被称为“心灵的窗户”。然而,眼睛却非常娇嫩,需要人们悉心呵护。 本书用形象的比喻、诙谐幽默的描述向读者传递眼睛的相关知识。首先,阐释了自然界中各种动物的奇特眼睛及真给人类带来的启迪,以唤起读者对眼睛的好奇和兴趣。其次,描述了人类眼睛鲜为人知的“奇闺趣视”,从科学的角度解释日常用眼过程中遇到的一些问题,进一步激发读者不断去探索眼睛的奥秘。再次,用深入浅出的方法,从专业角度介绍眼睛的结构、工作奥秘以及人类眼睛成长与衰老的过程。最后,介绍了眼睛常见疾病的陆治和相 目录 目录总序 / i前言 / iii章 探秘神奇的眼睛 / 001节 动物世界奇特的眼睛 / 002一、视力“动”“静”迥
暂无内容简介。。。。。。
本书介绍了各种各样的数:从常见的自然数0至10到负数,从 简单 的有理数到复杂多变的有理数和无理数;从已知*的质数到最小的无穷大。每个数都它自己的故事,而围绕着这些数,作者不但讲述了每个数背后的历史,更拓展出众多有趣的数学问题,让这些数成为带读者进入神奇数学世界的 引路人 。
内容简介 在这本书中,《魔鬼数学》作者、几何学家乔丹·艾伦伯格带领我们展开了一场海阔天空的探索之旅,旅程的终极意义是:通过发现几何学的力量,我们能够更好地思考每一个现实问题,重新认识我们身边的世界。 一根吸管有几个洞?尼姆游戏的必胜玩法是什么?数字货币交易中的公钥和私钥是怎么生成的?我们如何做才能阻止一场流行病肆虐世界?人工智能在学下国际象棋方面得心应手,而在学习朗读句子方面却力不从心,这是为什么?古希腊的黄金分割比能用来预测股票市场的走势吗?如果你的孩子真想学会思考的方法,他们应该在学校学些什么?所有这些问题都跟几何学有关,千真万确。 对大多数人来说,几何学是一门充斥着枯燥刻板习题的课程,高中一毕业,它就和你的牙套、你曾经追过的流
本书是在普通高等教育“十一五”国家规划教材《大学数学应用教程(本科第二版·上册)》基础上,深入总结多年来教学改革和实践的经验,迎合应用型本科转型改革和试点的需要并充分利用多媒体等现代教学技术编写而成的. 全书分上、下两册,内容包括: 函数、极限与连续,导数与微分,不定积分,定积分,导数与微分的应用,定积分的应用,常微分方程,数值计算方法,向量与空间解析几何,多元函数微分法及其应用,多元函数积分法及其应用,无穷级数,高等数学的软件实现,其中带“*”的为选学内容.通过书上的二维码还可以参阅线上相应的电子资源内容. 本书适合非“211”大学理工科和经济管理类各专业本科生使用,也适合同层次的成人教育以及工程技术人员使用.
本书主要面向学有余力的小学高年级学生、中学生以及其他数学爱好者,从有趣的数学故事出发,由浅入深地介绍数论、代数、几何和组合数学等主要内容,并对概率、拓扑等内容进行了有益的拓展。同时,本书再现了多个与数学原理相关的历史、文化、科学和艺术场景,展现了数学之美以及数学和人文科学的统一。本书综合趣味性和可读性,以可以启发读者自主思考的方式 提供分析和解决问题的思路,使读者能够举一反三、开拓思维。 本书可以作为学生的课外读物,也可作为数学爱好者进行数学思维训练和补充数学知识的资料。
本书设计了一段为期53周的数学探索旅程,旨在让读者在日常生活中轻松体验数学之美。每张卡片对应一周的时间,正面呈现该周的日期信息,而背面则记录了精选的数学故事、定理的揭示、趣味数学问题或数学符号的趣闻轶事。从古希腊几何大师的智慧到现代数学的奇妙应用,从基础的加减乘除到复杂的数论奥秘,每周*是一次独特的数学探险。本书适合所有年龄段的数学爱好者,任何对数学抱有兴趣的读者*能从中获得知识和乐趣。