《这才是好读的数学史》介绍了数学从有记载的源头向*初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
本书分四章循序渐进地介绍了印度数学在加减乘除运算中的妙用,尤其是乘除运算,更是印度数学大显神威的舞台。*章是入门篇,介绍加减运算中从左向右的逆向速算法;第二章和第三章属进阶篇,介绍印度数学的核心思想之一 补数思想,以及数种针对特殊算式的特别方法;第四章介绍了三种游戏式的简算法,带学习者认识印度数学轻松有趣的一面:这一章用格子算法、三角魔方等顿悟式的简算方法,告诉学习者数学并不单单是枯燥烦琐的逻辑运算,也可以是手脑并用的数字游戏或趣味十足的脑筋急转弯。 本书所传达给读者的并不仅仅是破解数学运算的公式原理,更是印度数学不走寻常路的创造性思维。它将为你点亮智慧的双眼,激发兴趣与热情,去发现学习乃至生活中的崭新天地。
个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
《从一到无穷大》是伽莫夫的代表之作,也是科普写作领域的经典。 全书分为四部分,涵盖了数学、物理学、生物学、化学等多学科内容。作为一本优秀的通识科普读本,伽莫夫以其深厚的科学素养和精湛的写作技巧,深入浅出地向读者讲述各领域内的经典理论与重要的研究成果,并将其融会贯通。如,书中讨论了数论、弯曲空间与引力之谜、四维时空特性、基因、原子与太阳系间相似的结构模型,以及恒星的诞生与死亡等诸多主题。通过这些有趣的事实和理论,从微观到宏观,为读者描述了一幅全面的宇宙图景。 作为富有启发与教育意义的科普读物,本书适合对科学怀有信仰与憧憬的人,尤其是青少年。
吴老师认为,学好数学并不难。数学就在我们周围,我们每个人都是天生的数学家。只要经过合适的引导,学会理解数学背后的美与逻辑,我们每个人都能爱上数学、擅长数学。 在这本书中,吴老师通过26个生动有趣的话题,如闪电和血管中蕴藏的分形几何知识、向日葵图案与斐波那契数列的奇妙关系、蝴蝶效应背后的数学解释、运用代数方法破解魔术等,向读者展示了运用数学思维理解问题、分析问题并终解决问题的全过程,为读者打开了隐藏在暗处的数学之门。
《这才是好读的数学史》介绍了数学从有记载的源头向最初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
数字总是令人生畏、使人困惑,尤其是那些很大的数字。错误的数字会影响我们做出重要决定,因此我们需要 数字感 通过经验判断和简单计算,就知道一个数字是否可靠。在这本书中,普林斯顿大学计算机科学教授布莱恩 W.克尼汉搜集了新闻、广告上各种带有数字的 假新闻 ,从数据来源、单位、维度、统计方法和图表等角度介绍了14种辨别可疑数字的方法,帮助我们提升 数字感 。 当然,这本书中并没有复杂的概念和运算,只需要运用小学算术中的加减乘除,你就可以轻松识别常见的数字谬误,判断数据的可信度并做出正确决策。
《数学圈3》是《数学圈丛书》之一。《数学圈3》分告别数学圈和回归数学圈两大部分。其中告别数学圈主要介绍了从惟一的学位论文到卡洛尔的壁炉,从柏拉图到阿丁,从作者的笑话到一道难题以及从叔本华谈数学到标点问题;而回归数学圈主要介绍了从牛顿的床到通用语言,从概率到蟋蟀,从不可能的几何到归纳问题以及从光学错觉到因子分解。通过这些内容,可以改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活
《数学·人类智慧的源泉:数学符号一本通》用通俗、生动的语言,翔实介绍数学符号的来历和发展,以及人们前赴后继地发现这些数学知识的曲折,这些为数学宝库增色添彩的猜想和发现,能够激发青少年读者学习数学的兴趣,开启潜在的创新意识。
《如何破解达芬奇密码?——35问揭示数学之美》是一本数学科普书。作者通过如何成为数学家、如何在股市掘金、如何生出漂亮宝宝、如何破解达芬奇密码等35 个有趣的问题,涵盖了数学发展史的方方面面,展示了数学世界的多彩和美丽。 《如何破解达芬奇密码?——35问揭示数学之美》适合对数学感兴趣的各层次读者阅读。
每个人天生都有数学力,有着内建的“数学式思维模式”,若能有效发挥,就能在学校、职场、人际关系中表现出来,从容不迫地获得更好的效率及成就感。 但这种思维模式会受到周围情境、心理状态等因素的影响,总是“灵光一闪”、“无意识”地显现,让我们难以掌握,在必要时反而无法使其发挥作用。 本书作者经过多年的教学经验及研究发现,其实只要理解数理性思维的七个方面,就能将“无意识”的数理性思考过程转化为“有意识”的思考过程,引出内在的数学潜能,在各种必要时刻派上用场。不论你自认数学如何,这个方法都能在短时间内有效激发你的数学力,给你带来的优势。
1632年8月10日,5名身着黑袍的男子聚集在昏暗的罗马宫殿里,就一个看似简单的命题进行讨论: 一条连续的线由不同的、无穷小的部分组成。教士们大笔一挥,严令禁止无穷小的传播,宣布永远不许传授或提及无穷小概念。他们认为,它是危险和颠覆性的,是对当时信仰的极大威胁,即世界井然有序,由严格和不变的规则所统治约束。如果无穷小被接受,他们担心,整个世界将陷入混乱。 在本书中,享有盛誉的历史学家阿米尔·亚历山大披露了教士裁决背后的深层原因,并揭示了无穷小和不可分量学说是如何持续存在,并成为微积分和大多数现代数学与技术的基石的这段历史。事实上,并不是每个人都同意教士们的观点。欧洲各地的哲学家、科学家和数学家都将“无穷小”视为科学进步、思想多元的关键。正如亚历山大所揭示的,不久,这两个阵营就展开了一场战争
《蚁迹寻踪及其他数学探索》讨论了“为什么某些用分式定义的序列只产生整数”,“怎样才能让两人通过电话玩扑克,还要保证对手不爱欺骗”等许多有趣的数学问题。
本书是一本形式新颖的数学魔术书,融合了数学、魔术、故事、漫画等多种元素。全书共分为18章,每章都介绍一个精彩的魔术和与之相关的数学知识。书中以漫画的形式来呈现数学魔术,提升科普数学的阅读乐趣,内容丰富,形式新颖,一定能给喜爱魔术的读者带来别样的感受。 另外,作者将数学原理和魔术 结合,打造出一个个令人惊讶的数学魔术。 为奇妙的是,作者将这些数学魔术巧妙地融入精彩刺激的故事中。阅读本书,读者不仅能体会到数学的魅力,学习到神奇的魔术,还能欣赏到精彩 伦的故事。可以说,这既是一本传授魔术的书,又是一本数学科普书,还是一本生动的小说。
既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。本书是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I?斯图尔特增写了新的一章。此第二版以新的观点阐述了数学的进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 本书是世界的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师,大学生和高中生,都是一本极好的参考书。