这本《数学维生素》(作者朴炅美)起到的作用是帮助读者消化、吸收重要的营养素(数学知识),所以它不是什么数学蛋白质或数学碳水化合物,而是数学维生素。人类仅凭吸收维生素无法维持生命,与此相同,在阅读《数学维生素》这本书时,应同时阅读强调数学知识的书籍,这才是正确的方法。
本书第三版保持了内容精选、适用性较广并便于教学的特色,吸收很多高校教师使用本书中提的宝贵意见,参考现行教学大纲并考虑到当前教学发展的需要。修订时注意将一些论证写得详细些,并简化部分证明;全书各章均配上小结;对数学术语依现行标准统一订正;增加例题,调整习题,特别收取了近年来招考研究生的部分试题。此外,订正了书中的各种错误。篇幅略有增加。??全书共十章:篇包含集与点集、勒贝格测度、可测函数、勒贝格积分与函数空间Lp五章,第二篇包含距离空间、赋范线性空间与内积空间、赋范空间上的有界线性算子、内积空间上的有界线性算子与广义函数大意五章。每章后附有习题。??本书可作为综合、理工、师范院校的数学与应用数学、计算数学、统计数学等专业的,也可作为部分研究生、自学者的参考用书。所需预备知识为数学分析
调和映照是流形间映照能量泛函的临界点,是几何中测地线以及极小曲面概念的自然推广。 《调和映照讲义》分两部分。部分根据作者于1985年在美国加州大学San Diego分艘作关于调和映照课题的系列演讲的内容整理而成。这一部分致力于黎曼面上的调和映照。内容包括Teichmuller空间的紧化,Sacks-Ulenbeck在极小球面的基本工作和不可压缩极小曲面的工作以及运用调和映照来证明的Frankel猜想等。 《调和映照讲义》第二部分的头两章中,讨论了调和映照的正则性理论,其中目标空间可以不是良好的流形。第二部分还包括将调和映照理论用来研究负曲率流形的拓扑性质。《调和映照讲义》最后一章用调和映照方法对的Mostow的刚性定理和Margulis超刚性定理给出概念上和原始证明不同的全新的证明。《调和映照讲义》可作为研究生教材,也可供高等学校数学系及物理系研
本书介绍数理逻辑的基础部分。绪论除介绍逻辑初步概念外还讲述了有关集合论和递归论的初步知识。正文前四章的内容属一阶逻辑,其中前两章是以非形式化的方式介绍命题逻辑和谓词逻辑,后两章分别给出了一个经典命题逻辑演算系统P和一个经典谓词逻辑演算系统Q,讨论了它们的元性质,最后还给出了一个与Q等价的形式系统QS。最后一章介绍了有关一阶理论的知识,主要是模型论的基础内容及不可判定问题。各章节后一般都附有适量的习题。本书适合作为高等院校文科、理工科所开设的与现代逻辑相关课程的教材或参考书。
本书是演化博弈论研究领域的经典著作。1982年,约翰·梅纳德·史密斯因此书的出版被称为演化博弈论之父。在本书中,作者把博弈论的思想纳入到生物演化的分析中,揭示了动物群体行为变化的动力学机制。虽然论述的思想和知识涉及生物学、博弈论和数学等交叉领域,但看似艰深的理论,作者却信手拈来,融精妙思想与优雅文笔于一体,大大增强了本书的可读性,也使其在学界享有盛誉,长销不衰。
本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。 部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著。在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它。作者把华林问题与哥德巴赫问题的研究方法结合起来,并把华林问题一方面推广到每一加数是整系数多项式的情形,一方面限制变数仅取素数值。作者把塔锐问题也加上了变数只取素数值的限制,同时又讨论到更广的素未知数的不定方程组。 下部主要讨论了指数和的各种估计方法及其应用,特别讨论了这些方法对Waring问题及Голъдбах问题的应用。除此而外,也谈到了解析数论的其他一些问题与方法。这部分不仅综合了这几方面的结果与文献,更重要的是对其中绝大部分重要的结果都给出了较完备的
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
陶伯理论对级数和积分的可求和性判定的不同方法加以比较,确定它们何时收敛,给出渐近估计和余项估计。由陶伯理论的最初起源开始,作者介绍该理论的发展历程:他的专业评论再现了早期结果所引来的兴奋;论及困难而令人着迷的哈代-李特尔伍德定理及其出人意料的一个简洁证明;高度赞扬维纳基于傅里叶理信论的突破,引人入胜的“高指数”定理以及应用于概率论的Karamata正则变分理论。作者也提及盖尔范德对维纳理论的代数处理以及基本人的分布方法。介绍了博雷尔方法和“圆”方法的一个统一的新理论,本书还讨论研究素数定理的各种陶伯方法。书后附有大量参考文献和详细尽的索引。
程代展、齐洪胜所著的《矩阵的半张量积——理论与应用(第二版)》介绍了一种新的矩阵乘法,称为矩阵的半张量积。它将矩阵的普通乘法推广到任意两个矩阵,这种推广不仅保持了原矩阵乘法的所有基本性质,而且具有程度的可交换性,使矩阵方法可方便地应用于逻辑函数、高维数组及非线性问题。本书前5章介绍半张量积定义及基本性质,后7章为其各种应用,包括数理逻辑及基于逻辑的智能系统,对微分几何及抽象代数中的一些基本问题的应用,非线性控制系统的镇定,动态系统的对称性,非线性系统的稳定域估计,系统控制中的Morgan问题及线性化问题。 《矩阵的半张量积——理论与应用(第二版)》在修订版的基础上增加了近期的一些进展,适合系统科学、控制理论、计算机、人工智能等专业的师生及科研人员阅读参考,也可作为相关学科研究生的教科书。
哈代是20世纪最的数学思想家,同仁公认他是“真正的数学家是纯粹中最纯粹的”。这篇“自白”是他数学创造力衰退时写下的心酸文字。 在哈代的笔下,数学远远不仅是一门科学,还是艺术,是娱乐,是真善美。 本书刚出版,就被誉为堪与亨利·詹姆斯的笔记媲美的对“创造性艺术家的描述”。 C·P·斯诺的长篇前言满含深情地回顾了哈代的一生,栩栩如生地讲述了他的学术生活和有趣的业余爱好。
苏布拉马尼扬??钱德拉塞卡(Subrahmanyan Chandrasekhar),美籍印度裔物理学家和天体物理学家,因在星体结构和进化的研究而与另一位美国天体物理学家威廉??艾尔弗雷德??福勒共同获得1983年诺贝尔物理学奖。 本书是钱德拉塞卡的代表著作,前两章详细介绍了广义相对论中在黑洞方面用得比较多的数学技术,特别是纽曼-彭罗斯形式的引入和应用。第三章介绍了史瓦西、RN和克尔三种为典型的黑洞和它们的时空结构,以及纽曼-彭罗斯形式在其中的运用。第四章则是以史瓦西黑洞为例介绍了黑洞的微扰理论。之后的部分则是针对宇宙中黑洞的形式——克尔黑洞的一系列讨论。最后一章则是简要引入了克尔-纽曼黑洞并且介绍了一般性的方法。 纽曼-彭罗斯形式是弯曲时空下求解场的运动方程时能够使人们对方程分离变量的非常重要的一项技术,而作者作为首先对克尔时
《椭圆曲线》共分八章。在每章中,如果需要用到一些比较深刻的或读者不太熟悉的概念,如同余、群、环、域、ζ函数、L 函数、模形式等,我们都会适时的在适当的地方予以介绍。在本书的正文前给出了一些常用的符号及其说明,书末则给出进一步阅读的有关(英文)参考文献。为了节省篇幅,在本书中我们一般不给出定理的详细证明。