本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
库尔特 哥德尔是一个智慧巨人。他的不完全性定理不仅改变了数学,而且改变了整个科学世界和建筑于此定理之上的哲学。哥德尔定理粉碎了逻辑最终将使我们理解整个世界的梦想,同时也引发了许多富有挑战性的问题:什么是理性思维的界限?我们能够完全理解我们自己造的机器吗?我们能够搞清楚我们心智的内在工作过程吗?当研究结果缺乏逻辑的确定性时,数学家还怎么继续工作?在这本书里,我们最终遇到了置身于这些深邃思想背后的那个人。约翰 L.卡斯蒂和维尔纳 德波利为我们描述了一个复杂的人物:既入世又遁世,既雄心勃勃又固执己见。 正像卡斯蒂和德波利所明断的那样,哥德尔的影响是持久不衰的。他的工作不仅使数学发生革命性的变化,而且波及哲学、语言学和计算机科学,甚至还包括宇宙学。
这本教材包含了初等数论的基础知识,穿插了有关史料及费马、欧拉、高斯等数论大师的生平事迹,也介绍了许多数论名题及相关进展。本书包括正文7章及附录:自然数的基本性质,整除性、素数及算术基本定理,带余除法、*公因数及*小公倍数,辗转相除法与线性丢番图方程,同余式、剩余类及中国剩余定理,欧拉定理、费马小定理及威尔逊定理,二次剩余理论及其应用,作者提出的十个数论猜想。本书起点较低,在每章后都配有习题,便于具有高中以上水平的读者自学。 本书可作为高等学校 初等数论 课程的入门教材,也可作为高中数学教师的参考用书。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书系统地介绍了置换多项式的产生、发展和理论,并且着重介绍了它在现代科学中的广泛应用.论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。 本书可供从事这一数学分支相关学科的数学工作者、大学生以及数学爱好者研读。
本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
大数据时代,人们在生产生活中收集了大量的高维复杂数据。在针对这些数据进行统计分析的过程中,构建一个简单高效的模型至关重要。一个简单的稀疏模型不仅具有很好的解释性,常常也具有很高的性能。本书的主要工作就是针对高维数据的稀疏统计建模研究。
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是*基础的,并非仅限于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要*终掌握超限归纳并且理解它为何总被Zorn引理替代的专业数学家。 《集合论基础》介绍了 朴素 (非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方