本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
本书是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法一一合情推理(即猜想)。本书通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书以易于理解的方式讲述了时间序列模型及其应用,主要内容包括:趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差时间序列模型、谱分析入门、谱估计、门限模型.对所有的思想和方法,都用真实数据集和模拟数据集进行了说明. 本书可作为高等院校统计、经济、商科、工程及定量社会科学等专业学生的教材或教学参考书,同时也可供相关技术人员使用.Translation from the English language edition:Time Series Analysis with Applications in R ,Second Edition(ISBN 978 0 387 75958 6)by Jonathan D.Cryer and Kung Sik Chan. Copyright 2008 Springer Science+Business Media,LLC. Springer is a part of Springer Science+Business Media.
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
这本教材包含了初等数论的基础知识,穿插了有关史料及费马、欧拉、高斯等数论大师的生平事迹,也介绍了许多数论名题及相关进展。本书包括正文7章及附录:自然数的基本性质,整除性、素数及算术基本定理,带余除法、*公因数及*小公倍数,辗转相除法与线性丢番图方程,同余式、剩余类及中国剩余定理,欧拉定理、费马小定理及威尔逊定理,二次剩余理论及其应用,作者提出的十个数论猜想。本书起点较低,在每章后都配有习题,便于具有高中以上水平的读者自学。 本书可作为高等学校 初等数论 课程的入门教材,也可作为高中数学教师的参考用书。
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。