本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书首次出版于1884年,一百多年来一直吸引着各个年龄层次的读者,已成为科幻小说的经典之作。 本书的主角是生活在二维的平面国里的一个正方形,它向读者介绍了二维世界中的各种奇异现象,并带领读者游历了一维的直线国和三维的空间国,还提出了它对更高维的思考。作者的奇妙构思提供了对维度概念的直观、生动的刻画,并能引发读者更深入的思考。不仅如此,作者还借此讽刺了英国维多利亚时代的性别歧视和阶级制度。 这是一本集数学、科幻、讽刺于一体的奇书。在作者的精心阐述下,本书不仅有趣,而且有益,曾被翻译成多国文字,并以电影、动画片等形式出现。相信任何对科幻、科学、数学、写作或社会建制感兴趣的人都会喜欢这本书。
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是*基础的,并非仅限于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要*终掌握超限归纳并且理解它为何总被Zorn引理替代的专业数学家。 《集合论基础》介绍了 朴素 (非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
本书是由丘成桐主编的 数学与人文 系列丛书中的第二十八辑。丛书以大学生为主要读者对象,同时也适合中学数学教师阅读;它不仅适合数学领域的师生、研究人员阅读,而且也是社会上知识阶层有益的读物。丛书中的文章涵盖数学学科、数学家、数学史、数学文化和数学教育等方面的内容。 数学游戏和数学谜题是数学文化的重要组成部分,也是纯数学不可或缺的一部分,其中的数学知识也经常出乎意料地美妙。本辑收录了16篇文章,介绍了十五子游戏、七巧板、汉诺塔、Nim 游戏、幻方、鲁班锁、滑块游戏、24 点游戏、九连环等数学游戏和谜题以及它们背后的数学原理。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
《漫画统计学之回归分析》是世界上最简单的回归分析教科书,它通过漫画式的情景说明,让你边看故事边学知识,每读完一篇就能理解一个概念,每篇末还附有文字说明,只要跟着这些简单的习题进行操练,你就能在最短时间内成为回归分析达人!
中国古代数学思想扎根于中国古人社会实践之中,体现着中国古代生产方式、生活方式和思维方式的特点。反过来数学思想也推动着生产和其他社会实践的发展,促进着中国古代文化的发展。《中国古代数学思想(珍藏版)》通过对中国数学思想产生的文化背景、历史文物以及古代典籍来探讨中国古代数学思想的产生、发展与挑战。《中国古代数学思想》是一本研究中国古代数学思想发展的专著,书中具体包括了:数学思想从何而来(*章)、数学思想的*初表达(第二章)、数学名著中典型的数学思想等内容。作者以生动平实的语言,将数学在中国历史上的进化演变如讲故事般娓娓道来。
nbsp nbsp这本由数学家写成的小册子,充分地体现了数学文化、科学精神和学者应有的风骨。作者雷尼立意巧妙,在真实的三段古代背景里,假托苏格拉底、阿基米德和伽利略与其他人的对话,抽丝剥茧地探讨了数学是什么、数学的应用该如何展开,以及数学语言对科学的意义这三大主题。《数学对话录》语言优美、节奏和缓,用可读性很强的对话,慢慢将探讨带向深层,使读者既能体会思维提升的乐趣,又可以享受轻松适意的阅读过程。读雷尼的《数学对话录》,不需要任何专门知识。但是只有肯思考的人,才能循着他的引导,从*远的门外,拾级而登,渐入佳境,*后在科学的殿堂里找到自己能够欣赏的杰作。
《张量分析简论(第2版)》是Springer 数学本科生教程 系列丛书之一,适合于工程、物理、数学以及相关应用学科的高年级本科生,可以作为学习连续介质力学和广义相对论的很好的过度教材。这部简明教程还包括给出解答的问题和一些练习。读者有基本微积分和线性代数的知识,并对力学和几何的基本观点熟悉将会更容易学习理解本书内容。第2版增加了不少新的练习,也增加了专门讲述微分几何的章节。
《数学与人文》丛书第三十一辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本专辑登载丘成桐先生的两篇专稿,恰好分别是涉及中外两个著名高等学府的学术行政工作的回顾和评论,读来令人颇受教益和启发。在 数学与物理 栏目中,清华大学物理学教授、中科院院士薛其坤指出,数学和物理很多情况下都是密不可分的;美国新罕布什尔大学数学与统计系的孔良注意到,物理和数学从一开始就有着相互依存的关系;Charles F. Doran 和 Ursula A. Whitcher的文章再次证明,数学与物理之间确实存在着不可思议的密切联系。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
《数学与思维(珍藏版)》从数学与左脑思维,数学与右脑思维、数学研究与左右脑的配合三个方面,精辟地论述了数学研究中思维的作用,数学思维的特性和它的各个侧面(抽象性,形式化与心理化,想象、猜测和直觉的重要性等),以及各种思维形式的综合使用能力。书中还讨论了数学思维的一些具体规则和方法。珍贵的是,全书不但融会了学术界在数学与思维方面的已知研究成果和新资料,而且还提出了作者自己的一些新观点和新见解。全书论述的内容思想深刻,分析精辟,论述有据,文笔流畅,具有较强的学术性和较广泛的可读性。
1893年夏天,在美国芝加哥召开的国际数学大会上,19世纪*著名的数学家之一F.Klein在美国西北大学作了为期两周的埃文斯顿学术报告会演讲。这本F.克莱因编著的《Klein数学讲座(附季理真代译序)》,由他报告的讲义组成。在这两周的报告中,Klein给出了他所认为的在那个时期非常重要主题的个人观点,演讲强烈地影响了美国数学的兴起。这些观点在今天不论是对于数学历史还是数学发展依然有借鉴之用。《Klein数学讲座(附季理真代译序)》将对中国的学生和年轻的数学家起积极的影响。
《数学与创造(珍藏版)》分8章论述了数学与创造的关系,数学的各种创造特性,数学教育中培养创造性和能,力的重要性,以及数学创造的方方面面。 书中首先对观察力、记忆力、思维力、想象力、运算能力这些创造的智力因素,以及社会、兴趣、毅力、环境等创造的智力因素,进行了理论上的探讨,并列举了许多数学上的实例做进一步的说明。对于数学创造这个高智力的复杂活动,书中也做了,深入的研究。在阐述了数学创造的动机与应用之后,还用了相当的篇幅讲述了数学与其他学科领域的创造的联系、数学创造的方法等。全书用了大量的史料,说明数学的发明与发现中体现的创造性,无论其广度还是深度,均可与人类任何科学、文化、艺术和社会生产实践的、创造相媲美。全书资料翔实,文笔流畅,且有分析、有说明、有理论、有提高,具有较
化归,就是通过某种转化,将复杂的问题转化成某一类已解决或较容易的问题,是数学方法论中重要的思想之一。由史久一、朱梧槚*的《化归与归纳类比联想(珍藏版)/数学科学文化理念传播丛书》虽然是从方法论角度研究数学题材的*作,但是兴趣并不在解题,而在于如何去探索和发现解决问题的方法。 本书所有的数学知识都被限制在中学范围以内,能使一般读者以*高的视角去看待数学,并掌握化归这种在生活中十分重要的思维方式。
你以为无解的方程组真的无解吗?维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生?小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何 好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的 小二乘法 数学公式和算法背后的智慧帮助我们 好地看清这个世界,并在遇到问题时提供 科学的视角,帮助我们做出 好的决策。很多事情的 终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不 的前提下,通过数学思维权衡多方的利益,找到 的解题点。人生其实就是一