《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
(第二版)张景中著北京内容简介本书从小学生知道的三角形内角和的知识以及三角形面积公式出发,举一反三,推陈出新,直观而严谨地给出正弦的新定义.在此基础上,轻松得到正弦定理、和角公式、勾股定理等一系列三角公式和几何定理,揭示出几何、代数和三角的基本知识之间的密切联系,以三角为主线,构建了初等数学的新体系.书中思想新颖,方法简明犀利,说理严谨,特别着力于从平凡处发掘创新的思路,引导读者发现问题深入思考.全书分为5个部分:正弦和正弦定理;正弦和角公式;余弦和余弦定理;四边形;圆和正多边形. 大体上覆盖了初中应掌握的几何、代数和三角的基本知识.书中每节都安排了例题和习题.
内容简介本书介绍了用 GeoGebra软件创建物理积件的方法,共有62个案例,涉及高中物理中静力学、万有引力、机械波、磁场等内容。每个案例都用图文介绍创建方法,扫描二维码观看视频,使得学习更加自主有效。本书还介绍了GeoGebra 软件处理实验数据、求高次方程根、gif 动图的生成等功能,读者可以通过案例学习 GeoGebra软件,进一步制作自己需要的积件,教师可以直接使用书中积件进行教学。本书可作为高中物理教师信息技术培训教材、高中物理教师制作积件的自学教材、高校物理师范生培训信息技术的教材,也可以作为高中物理教学研究人员的参考资料。
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量*手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是全书的一大特色。本书所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
Jeremy Gray在本书中生动地叙述了欧氏几何、非欧几何和宇宙形态相对论思想的发展史。 欧几里得几何的平行公设在数学史上占有独特的地位。在这本书中,Jeremy Gray 回顾了证明该假设的经典尝试的失败,然后展示了 Gauss、Lobachevskii 和 Bolyai 的工作如何通过构建平行假设失败的几何来奠定现代微分几何的基础。这些研究反过来又促成了Einstein狭义相对论和广义相对论的形成,而这些理论构成了今天我们对宇宙概念的基础。 作者已尽一切努力将阅读难度保持在限度。本书可读性很强,包含了大量的历史和数学材料,适合理工科和数学专业的本科生阅读。 在第二版中,作者更新了大部分材料,并增加了一章,介绍了阿拉伯人对数学史这一迷人领域的贡献。 第二版非常值得一读,它既令人兴奋又发人深思。 New Scientist 版书评:Jeremy Gray提供了一个极好的阐述,讲述了一个
《无穷分析引论(下)》为微积分预备教程,为弥补初等代数对于微积分的不足,以及为学生从有穷概念向无穷概念过渡而写,读者对象是数学工作者和有一定数学基础的广大数学爱好者。该书在数学史上地位显赫,是对数学发展影响大的七部名著之一。
?注重一般性和基础性主题 ?抓住重点,徐徐善诱 ?揭示定义和定理的来龙去脉 ?强调知识的直观含义 ?培养勤于思考、善于总结的治学态度 ---------- 本书是黎曼几何的一本入门教材. 本书从黎曼度量及联络出发, 介绍了黎曼流形研究中的各种基本概念和技巧. 以测地线的研究为重点讨论了各种形式的比较定理和Morse指数定理, 同时还介绍了子流形几何学. 书中也勾画了近代微分几何中的一些重大成果, 如球面定理、正质量猜想以及几乎平坦流形等, *后还列举了当今微分几何研究中一些尚待解决的问题. 本书可供大学、师范院校数学系高年级选修课教材以及研究生教材, 也可供数学工作者参考.
本书主要讲述大范围黎曼几何的研究中具有重要意义的五个专题。内容包括:Hodge理论,和乐群,非紧非负曲率流形的结构,Gauss-Bonnet定理,黎曼流形的收敛性等。本书反映了大范围黎曼几何研究的概貌,有些内容是首次以讲义的形式作系统的讲解。例如,详细给出Hodge定理的一个完备的初等证明;比较全面地综述和乐群理论的过去和现状,以及在当代几何研究中的应用;剖析了陈省身关于Gauss-Bonnet定理的内在证明;介绍了Gromov关于黎曼流形收敛性的理论,把读者带进大范围黎曼几何的*领域。 本书叙述条理清楚,推理严谨,富有启发性。本书还特别注重介绍黎曼几何的历史背景、基本思想以及各专题之间的内在联系。 本书可作为综合大学、师范院校数学系高年级学生选修课教材和研究生教材,也是广大数学工作者了解大范围黎曼几何课题的重要参考书。
20世纪最伟大的数学家之一 Andr Weil 在本书中用真诚朴实的语言讲述了他从童年到1947年秋季的经历。他在书中回忆了主要游历:意大利、德国、瑞典以及英国;然后在印度工作两年多,其间他短暂地遇到了甘地;返回巴黎后参与创立了布尔巴基学派;战争年代继续到访了苏联、芬兰,他被芬兰警察当作苏联间谍,险些被执行死刑,辗转于多个监狱,在鲁昂监狱完成了他最伟大的工作:证明有限域上的光滑射影曲线的黎曼猜想;最后以美洲经历为本书画上句号。 通过阅读本书,读者可以洞察一位深刻思想者的内心,这位思想者具有超强的创造性。本书值得对数学、哲学感兴趣的读者收藏。
本书源于科学讨论,这也决定了它以独特的结构呈现,旨在展示科学的真谛:物理学没有永恒的真理,而是需要持续不断的质疑和讨论来推动其发展。 第一章汇聚了数学家、理论物理学家、实验物理学家和哲学家的广泛讨论,探索科学的本质及其发展。这一章开阔了思维的视野,让人们意识到科学是一个充满挑战和探索的领域。 第二章专注于量子场论的详尽介绍,深入解析其在标准模型中的重要性。这一章提供了量子场论的专业化知识,有助于读者更好地理解其在基本粒子物理学中的应用。 第三章的注释部分包含了大量的文献和历史知识,为读者提供了进一步深入了解相关领域的资源。这些注释的内容非常珍贵,可以进一步拓展读者对科学发展历程的理解。 通过阅读本书,读者将能够体会到科学界对问题的多元观点,并了解到科学是一个不断演进和前行的领域
欧几里得几何以其美丽、优雅和内在的逻辑性吸引了无数人。俄罗斯代数学家Igor R. Shafarevich是20世纪的一位数学领军人物,同时也是一位极优秀的数学普及作家。1943年以后,他一直在苏联科学院斯捷克洛夫数学研究所工作;1958年,他被选为苏联科学院通讯院士。他在本书中以丰富的例证表明,代数在这几方面丝毫不比几何逊色。 本书阐述了代数、数论、集合论和概率论的若干基本内容,却只需要很少的预备知识。本书可作为中学生的拓展阅读材料,也可作为中学数学教师的参考用书。
这本以问题为导向的生动的教科书,旨在指导读者掌握基本的数学不等式及其应用。作者从柯西-施瓦茨不等式讲起,向读者展示一系列与不等式有关的引人入胜的问题,并以乔治?波利亚的风格来指导读者求解它们,在讲授基本概念的同时,提升解决问题的技巧。这些问题的形式优美,内容出人意料。通过研究它们,读者可以系统学习如下的内容:平方的几何、凸性、幂平均的阶梯、控制、舒尔凸、指数和、赫尔德不等式、希尔伯特不等式和哈代不等式。 本书适合数学、理论计算机科学、统计学、工程学和经济学的高年级本科生和研究生阅读,也可作为分析学、概率论及组合学课程的补充材料。
本书利用图像化数学思维,将数学概念和知识变得生动形象;通过逐步的演绎,展示了数学知识的内在逻辑和层次,帮助读者提高学习效率并提升应用数学知识的能力。本书强调启发性的学习方式,在知识呈现上给予读者充分的思考空间,以培养其独立思考的能力。这是一本每个人都应该读一读的数学科普书,它能让你从多个角度看到数学不同的样子,从而体会到数学学习别样的乐趣。
数学是什么?它是如何被创造出来的?过去与现在,创造和实践它的人又是谁?人们能描绘出它的发展,它在科学思想史中所扮演的角色并预测它的未来吗?本书试图对这些问题的本质,以及这个主题的范围和深度提供一些浅见。 本书首先讨论关于整数的问题,其中出现了无穷的概念,并通过关于数与几何对象的更抽象概念的演变而发展。作者展示了数学家如何来考虑一般变换的群,继而考虑诸如空间这些对象的集合,他们尝试如何建立一般的结构理论。本书还考虑了数学与实验科学之间的关系,高速计算机对数学实验范围的深远影响,以及数学的进展取决于 发明 和 发现 程度的问题。对于数学家、物理学家或任何学习数学思想演变的学生来说,这项备受关注的研究提供了一项对数学本质的激发性研究。
概率方法是一种用随机数学研究图论和其他众多数学分支的方法和理论体系。它已经对数学基础理论和工业生产实际相关问题的建模和解决产生了深刻影响,而随机图的思想也对组合数学、理论计算机科学乃至整个数学的发展产生了重要作用。本书是著名数学家Joel Spencer(2021年Steele奖得主)关于 概率方法 的系列报告 概率方法十讲。作者用百页左右的笔墨构建了整个随机图和概率方法的宏大体系,通过例子详细介绍了随机图的基本模型、期望和方差等基本概念和方法、消去法和去随机化方法,也非常精彩地介绍了Lov sz的局部引理和Spencer自己的得意之作 偏差 。这些内容对于那些想要迅速掌握随机图基本工具的数学工作者、统计学家乃至工程师,或者想迅速进入该领域开展研究的年轻学子都是有益的。 本书可作为数学、计算机、信息安全等专业的高年级本科生和研
本书主讲高中数学常考的十四大版块中的 导数 部分,系统地分析了高中数学各版块中的重点和难点内容,共归纳了26个导数压轴的经典题型与方法分析,每节内容由知识点、经典题型、方法分析、重点和难点思路分析以及拓展技巧结论组成.本书为高中学生提供了系统的高考数学复习方案以及解决经典题型、重点和难点问题的应对策略.本书还侧重于方法、技巧和题型的总结与归纳.本书适合高二、高三的学生学习使用,希望通过学习本书能帮助同学们更好地解答导数压轴题.
本书是19世纪英国著名物理学家、数学家、经典电动力学的创始人詹姆斯?克拉克?麦克斯韦对牛顿动力学的一本优秀的导引。在这本篇幅不大但内容丰富的小册子中,麦克斯韦从物理科学的基础出发,一步步论述了运动、力、质心、功和能、摆和重力,直至万有引力,以此综览了19世纪晚期的物理学。它被许多教育工作者认为是有史以来好的介绍基础科学的论著之一,着笔清晰而简明,并且蕴含了麦克斯韦著作所特有的新鲜和优雅。全书共有149个小节,并在文末收录了麦克斯韦的名著《论电和磁》中 论连接系统的运动方程 一章以及关于 自然界中的力的相对性 和 小作用量原理 的两个附录。 本书初出版于1877年,直至今日,这本著名的小册子仍在世界各地不断重印出版,说明它仍有很强的生命力和重要的参考价值。本书可供从高中生到科学史学者的广泛的读者阅读。