本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以作为广大教师的教学参考书,还可以为毕业生考研复习和众多成人学员自学提供富有成效的帮助。读者使用本书时,宜先独立求解,然后再与本书作比较,这样一定会获益匪浅,掌握较多的有用知识。
本书针对大学高等数学下学期的课程内容——向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数——精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书介绍代数不等式证明中的有效方法,兼顾经典方法与作者的心得体会,侧重命题与解题的思想。全书共11章,选取200多个国内外代数不等式的典型问题,配有不同的证明方法,以解析各类解题方法,并对部分问题加以拓展。本书可作为数学奥林匹克训练的参考教材,供高中及以上文化程度的学生、教师使用,也可供不等式爱好者和从事初等不等式研究的相关专业人员阅读参考。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例 清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,下册包括多元函数的微分及其应用、重积分、曲线积分与曲面积分、常微分方程、无穷级数等内容。
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,本书编写中重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,上册包括数列与函数极限、一元函数的导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量代数与空间解析几何等内容。
暂无内容简介。。。。。。
本书是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对本课程的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complexnumbersandfunctionsofacomplexvariable(复数与复变函数),analyticfunctions(解析函数),complexintegrals(复积分),series(级数),residues(留数),conformalmappings(保形映射)。第7章和第8章是积分变换部分,包括Fouriertransform(傅里叶变换)和Laplacetransform(拉普拉斯变换)。书中各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
本书前两章研究出土算术文献的文本和思想内容。主要创新点是:提出两种整理出土算术文献文本的新方法;证明清华简《算表》有开平方功能;为简牍性质问题提供新线索。第三。章讨论学界判断算术文献成书年代的主流方法:该方法针对的是度量衡等时代信息 的零星信息,但在一本已经定型的书中,这些信息恰恰是 容易被后代改动的,不能作为主要依据。在此基础上,作者提出新的解决思路。第四章研究数学与儒学的互动。第五章研究数学与史学的互动,主要是解决其中跟数学有关的疑难问题,比如讨论《史记》记载的孔子俸禄和《汉书》记载的汉代“提封田”(领土面积)。后两章是目前学术界较少关注的。
本书是为准备考研复习的学生而编写的一本集知识点讲解、基础刷题、强化提升于一体的综合考研辅导材料。本书按照 新硕士研究生考试大纲的要求编写,内容包括基础知识梳理、基本题型解析、经典考研真题以及综合提升拓展等,汇集了概率论与数理统计考研的基本解题思路、方法和技巧,融入编者的教学及考研辅导的经验总结。 全书共有八章,包括随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计基本概念、参数估计、假设检验。每章根据考纲划分小节,节内包括知识清单、高频题型、核心考点、解题技巧、方法总结等栏目,每章 设置强化题型, 加贴近考研命题方向,帮助同学们综合提升。