本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
《(数学中的小问题大定理)丛书(第六辑):数论三角形》由麦比乌斯带联想,从正多棱柱体两端扭转相接的面数规律导出数字直角三角形,兼与贾宪三角形比较,阐述它的数字排式与性质,其中涉及初等数论中的许多内容。《(数学中的小问题大定理)丛书(第六辑):数论三角形》适合于大、中师生以及数学爱好者阅读参考。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。 《方程式论》适合大中师生及数学爱好者阅读及收藏。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。 《方程式论》适合大中师生及数学爱好者阅读及收藏。
本书分为宏观分析和微观精讲两大部分。 导读:介绍本章的主要内容及其相互联系、重点难点等。 本章知识脉络图:则将本章知识点以及相互联系用图表的形式直观展现,一目了解。 应记应背:将一些常用的、应该牢记的公式集中列出。理解并记住这些公式将大大提高解题效率。 本部分重在帮助读者总结、精炼、提高,是学习中“由多到少”的过程。 微观精讲部分包括“同步精讲精练”、“教材习题同步解析”的“单元测试”三个版块。 同步精讲精练:针对生一节,给出应该掌握的基本知识以及应注意点,使读者透彻、深入地理解基本概念、基本理论,这是对课堂的补充,是“弦外之音”。本版对难点、易错点都逐一进行剖析,不厌其烦,使读者进入课堂和伴读的环境。对于计算题,给出了做题的基本步骤。许多读者觉得学习时一看就懂,下
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译
本书是一部的李群及其表示论研究生教材,深受数学专业和物理专业的研究生好评。本书初版于1972年,以后经过多次修订重印,本书是1997年的第7次修订重印版。书中对一些问题的处理很有特色,立足点较高,但叙述十分清晰,如线性变换的Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式、Chevalley群的基本结构等。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。 《方程式论》适合大中师生及数学爱好者阅读及收藏。
《抽象代数讲义》是根据作者近年来在中山大学数学系讲授抽象代数课程的讲义写成的。全书共7章。章群论,第2章环和域,第3章环上的多项式,第4章向量空间,第5章sylow定理和可解群,第6章域的扩张,第7章群论在微分方程中的应用。书中附有习题和部分解答。本书的特点是加强了代数与分析的联系。书中还介绍了代数的一些较新的结果。《抽象代数讲义》可作为高等院校数学专业高年级本科生和研究生学习抽象代数的教材,也可供相关专业教师阅读参考。