本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
本书被北京市*列为“高等教育精品教材立项项目”是高等职业、高等专科教育经济类、管理类及工科类“线性代数”基础课的教材,该书依照*制定的高职、高专“数学课程教学基本要求”并结合作者多年来为高职班学生讲授“线性代数”课所积累的丰富教学经验而编写而成。全书共分五章,内容包括:短阵、行列式、线性方程组、短阵的特征值和特征向、二次型等,根据使用本书的院校的建议,为了适用于不同专业的教学要求,作者对原书内容帮了修订,即对重点内容进行改写,使之难点分散肯更加系统和适用,并在第三章补充了“投入产出数学模型”之一实用性较强的内容,还增加了第五章“二次型”;对增加的内容配置了练习题并给出解答。本书针对高职、高专学生的接受能力、理解程度讲述“线性代数”课的基本内容,叙述通俗易懂、简明扼要、富有启发
《线性代数/新核心理工基础教材》共分为五章,包括行列式,矩阵,线性方程组,矩阵的特征值与特征向量和二次型.《线性代数/新核心理工基础教材》吸取教材精华部分,依照文科生和留学生的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性针对性,即便于文科生高等数学教导,也方便自学,各知识点后配有相应习题,并附有习题答案。 《线性代数/新核心理工基础教材》可作为外语学院、媒设学院、行政管理、国际经济与贸易、公共事业管理、留学生等的教学用书,也可供广大读者进行自学。
《线性代数和概率统计基础/普通高等教育 十二五 规划教材》分为线性代数、概率与统计两个部分,共6章,内容包括行列式、矩阵、向量组与线性方程组的解、概率与分布、*变量的数字特征、数理统计初步,基本涵盖了工科各专业所需要的相关数学知识. 《线性代数和概率统计基础/普通高等教育 十二五 规划教材》在编写上突出了数学知识的系统性、简洁性、实用性,在表达上力求简明扼要,同时注重概念产生的背景,强调应用数学的意识,旨在培养学生的抽象思维能力、逻辑推理能力、运算能力以及科学建构数学知识体系的能力,并且使学生通过体会问题解决的数学过程,进一步形成解决问题的分析和思考能力,为其他课程的学习打下坚实的数学基础,
“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书较为系统地介绍了计算机科学与技术等相关专业所必需的离散数学知识,全书分为4个部分(数理逻辑、集合论、代数结构和图论),共7章。章介绍命题及命题逻辑; 第2章介绍一阶谓词逻辑及其推理理论; 第3章介绍集合的基本概念和性质; 第4章介绍二元关系和函数; 第5章介绍代数系统基本概念; 第6章介绍几个典型的代数系统; 第7章介绍图论的基础内容和一些特殊图及其性质。各章之后配有适当难度的习题及其简要参考答案,便于学生课后练习。每个部分结束后配有内容小结,便于学生自学、复习和提高。本书可以作为高等院校计算机科学与技术、软件工程、通信工程等相关专业的教材,也可以作为考研学生及计算机工作者的参考书。
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
高等代数是数学专业的重要基础课,它对培养学生的抽象思维能力、逻辑推理能力,以及后续课程的学习起着非常重要的作用,也是数学系硕士研究生入学考试的一门必考科目。高等代数主要包括多项式和线性代数两部分内容。线性代数又是工学及经济学科学生的基础课程,在硕士研究生入学统一考试数学试题中占有相当大的比例且是必考内容之一。这门课程的特点是内容比较抽象,概念、定理比较多,前后联系紧密,环环相扣,相互渗透。为了帮助考生加深对课程内容的理解,掌握解题的方法及技巧,提高应试能力,我们根据长期从事高等代数教学的经验及讲授考研辅导班的教案,编著成本书。
本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、矩阵和双矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,并可供有关专
《线性代数》详尽地介绍了线性代数的基本理论和方法,以线性方程组为主线,以矩阵为主要研究对象,同时利用MATLAB软件解决了线性代数中的相关问题。 《线性代数》主要内容包括:行列式、矩阵及其运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、MATLAB软件的应用,其中线性空间与线性变换可作为选学内容。本教材每章配有习题,并附有习题答案。 《线性代数》可作为高等院校非数学类专业线性代数的教科书或参考书,也可以作为教师的教学参考书。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
《线性代数及应用(第二版)》依据*审定的本科 线性代数课程教学基本要求 ,结合编者多年的教学经验编写而成。全书共6章,内容包括行列式、矩阵、n维向量组、线性方程组、相似矩阵与二次型和线性代数的MATLAB实现,各章习题按难易程度分成A、B两类,以适合不同层次读者的需求,《线性代数及应用(第二版)》在强调内容的适用性和通用性的同时,注重代数概念应用背景的介绍和线性代数在各领域中的应用,以及学生计算机应用能力的培养。 《线性代数及应用(第二版)》具有条理清晰、讲述详细、通俗易懂、简约实用、注重应用等特点,可作为应用型本科院校理工类、经管类专业的教材或教学参考书,也可供自学者或科技工作者阅读。
本书是高等学校经济类、管理类各专业学生学习线性代数的辅导教材。内容包括:矩阵、线性方程组、线性空间与线性变换、矩阵的特征值和特征向量、二次型。 本书总结归纳了各种题型,针对各种题型相应地给出了具体的解题思路和分析方法,对读者提高解题能力有很好的帮助。本书所选用的大部分例题都有一定的代表性,其中一部分是近年研究生入学考试试题。 本书是高等学校经济类、管理类各专业学生学习期间和报考研究生前的读物,是颇具特点的参考书。