本书从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书主要讨论了代数问题中经常出现的十个主题,每一章都以简短的介绍开始,其中包括一些示例,帮助读者掌握所提出的问题及解法的主要思想。全书分为两部分,第1部分讨论了二次函数,柯西不等式,代数式的极大、极小值问题,复数,拉格朗日恒等式及其应用等内容,并给出相关问题;第2部分为第1部分的所有问题提供了解答。 本书的目标受众包括所有正在接受数学竞赛培训或希望提高代数技能的学生,同时也欢迎数学爱好者参阅。
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。 本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。
《数学概览:代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《数学概览:代数基本概念》高度原刨且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、Lie群与Lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们读者能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将
本书共6章,介绍了方程式解成根式的问题 低次代数方程式的根式解法、数域上的多项式及其性质、用根的置换解代数方程 群.论四次以上方程式不能解成根式、以群之观点论代数方程式的解法以及抽象的观点 伽罗瓦理论的相关知识. 本书适合高等学校数学相关专业师生及数学爱好者阅读参考.
本书为《代数学教程》第五卷,主要讨论我们熟悉的那些多项式:一般域上的多项式、有理数域上的多项式、实数域上的多项式、复数域上的多项式以及多个未知量的多项式等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一类多项式的构造及其性质,用代数观点来叙述全部理论. 本书适合高等院校理工科师生及数学爱好者阅读.
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
本书为《代数学教程》第三卷,主要讨论我们熟悉的那些数系:自然数集、整数环、有理数域、实数域、复数域,以及超复数等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一种数系的构造(运算)及其性质,建立起了严格、系统的科学数系的逻辑过程.本书适合高等院校理工科师生及数学爱好者阅读.
全书共分两卷,涉及的面很广,可以说概括了1920?1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
内容简介 本书是美国著名数学竞赛专家TituAndreescu教授及其团队精心编写的试题集系列中的一本。 本书从解题的视角举例说明初等代数中的基本策略和技巧,书中涵盖了初等代数的众多经典论题,包括因式分解、二次函数、方程和方程组、Vieta定理、指数和对数、无理式、复数、不等式、连加和连乘、多项式以及三角代换等主题。为了让读者能够对每章中讨论的策略和技巧进行实践,除例题之外,作者精选了108个不同的问题,包括54个入门问题和54个高级问题,给出了所有这些问题的解答,并对不同的方法进行了比较。 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考。
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
《矩阵论(上)》是根据苏联国立技术理论书籍出版社于1953年出版的甘特马赫尔所著的《矩阵论》来译出的,全书为原书部分:矩阵的理论基础,包括第1至10章。分别为矩阵及其运算,高斯算法及其一些应用,n维向量空间中线性算子,矩阵的特征多项式与小多项式,矩阵函数,多项式矩阵的等价变换。初等因子的解析理论,n维空间中线性算子的结构,矩阵方程,U—空间中线性算子,二次型与埃尔米特型。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);de Morgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey 拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。 《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书是一部优秀的李群及其表示论研究生教材,深受数学专业和物理专业的研究生好评。本书初版于1972年,以后经过多次修订重印,本书是1997年的第7次修订重印版。书中对一些问题的处理很有特色,立足点较高,但叙述十分清晰,如线性变换的Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式、Chevalley群的基本结构等。