本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。
本书作者是世界著名数学家R. Langlands (朗兰兹) 的弟子。在数学领域中,著名的朗兰兹纲领是一系列影响深远的构想,联系数论、代数几何与约化群表示理论。本书则从数学底层讲述微分方程和代数这两个数学重要分支的内在联系,通过讲述非交换环、单径表示等内容,向读者介绍在一般微分方程和代数的数学书中不常见的内容,展示微分方程和代数的发展史中的光辉一页,立意颇高。 本书是《现代数学基础》系列中的一本,具体内容包括:微分方程与代数、复微分方程、p进微分方程、形式偏微分方程、联络的同调代数、G丛、Simpson对应和微分算子层等,可供数学及相关专业的师生及科研人员使用参考。
《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
本书从有限维空间线性算子的特征值出发, 采用类比、归纳等方式, 通过大量实例循序渐进地引入无穷维空间上线性算子的谱理论, 系统介绍并分析了有界线性算子、共轭算子、正常算子、自共轭算子、紧算子的结构, 讨论了上述这些有界线性算子的谱点分类、谱集的性质和谱分解定理. 进而对闭的线性算子、无界线性算子, 特别是在近代物理学、量子力学中有着深刻应用背景的微分算子的结构、亏指数、自共轭扩张和它们的谱分解加以分析.
呈献给读者的这部作品是卷一的续作,目的是在读者了解代数学中的基本结构的前提下,介绍可以合理地泛称为线性代数的一系列方法、思想和技巧。这些方法的应用穿透当代数学的方方面面,而为了尽可能全面地回应实际需求,便有必要将相关技术锻造为更纯粹也更精炼的形式。范畴与函子对此是不可或缺的语言。本书预设的背景知识包括对群、环、模、域等代数结构与范畴论的了解,读者可以参考卷一。卷二分为内篇、外篇和附录三大部分,内容包括:范畴论、Abel范畴、复形、三角范畴与导出范畴、谱序列、群的同调与上同调、单子论、单纯形方法、对偶性等,主要面向从事相关研究或怀抱兴趣的高年级本科生、研究生、教研人员和自学者。
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
本书基于作者几十年来在多所大学的授课讲义整理而成,全书共分五章。章为基本架构,从多项式零点集合即代数集出发到概形概念的建立,要求读者了解拓扑流形、微分流形或者复流形的基本概念。第二章讲解代数闭域上的几何,目的是构建几何背景。第三章讲解概形进一步的结构及其上面的层。第四章、第五章则利用同调代数构造概形上层的上同调理论,它是从局部走向整体的主要工具;我们将应用它研讨概形的若干重要基本性质,包括对偶理论、曲线和曲面的Riemann-Roch定理等,这使得本书具有更浓的现代数学味道。 本书可作为高等院校数学及相关专业本科高年级学生和研究生的教材或参考书,也可供相关研究人员参考。
无
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引.本可作为工程硕士以及数学、统计、物理等专业研究生的教材,对从事线性代数纯理论研究和应用研究的人员来说,本书也是一本推荐的参考书。
本书系统和全面地介绍了组合优化的基本理论和重要算法。全书共分22章,内容既包括图论、线性和整数规划以及计算复杂性等基础部分,又涵盖了组合优化中若干重要问题的经典结果和最新进展.除了对理论的深刻讨论外,书中还提供了丰富的研究文献和具有挑战性的习题。