本书第三版保持了内容精选、适用性较广并便于教学的特色,吸收很多高校教师使用本书中提的宝贵意见,参考现行教学大纲并考虑到当前教学发展的需要。修订时注意将一些论证写得详细些,并简化部分证明;全书各章均配上小结;对数学术语依现行标准统一订正;增加例题,调整习题,特别收取了近年来招考研究生的部分试题。此外,订正了书中的各种错误。篇幅略有增加。??全书共十章:篇包含集与点集、勒贝格测度、可测函数、勒贝格积分与函数空间Lp五章,第二篇包含距离空间、赋范线性空间与内积空间、赋范空间上的有界线性算子、内积空间上的有界线性算子与广义函数大意五章。每章后附有习题。??本书可作为综合、理工、师范院校的数学与应用数学、计算数学、统计数学等专业的,也可作为部分研究生、自学者的参考用书。所需预备知识为数学分析
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。