美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。 吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。 众所周知,学习数学,作练习题是一个很重要的环节。通过作练习题,可以巩固我们所学到的知识,加我们对基础概念的理解,还可以提高我们的运算能力,逻辑推理能力,综合分析能力
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
本书是作者在长期从事数学分析教学的基础上写成的,也是数学分析基本概念、基本定理及各类M题常用与典型方法的一个总结。书中对数学分析的内容按知识点进行整合,对各个重要知识点进行了系统讲解和辨析,对近些年来一些重点高校的典型考研试题进行了独到的分析和讨论,使得整个数学分析所涉及的知识结构更加清晰。 全书共17讲,每一讲都系统总结了相关知识点,并给出了一系列典型M题和解题方法。读者可从这些方法中加深对数学分析概念的理解,达到开阔思路、提高解题能力的目的。
《微积分》是根据《经济管理类本科数学基础课程数学基本要求》,结合应用型本科微积分课程教学的实际情况,汲取同类课程其他教材的优点编写而成的。本教材注重适当渗透现代数学思想,理论联系实际,加强对学生应用数学知识和方法解决经济问题的能力的培养,以适应现代经济科学对经济人才数学素质的要求。本教材共分为8章:函数、极限与连续;导数 与微分;微分中值定理与导数的应用;不定积分;定积分;多 元函数微积分;无穷级数;微分方程与差分方程。
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。