变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
《物理学中的群论》第三版分两篇出版, 《物理学中的群论: 有限群篇》是有限群篇, 但也包含李代数的基本知识. 《物理学中的群论: 有限群篇》从物理问题中提炼出群的概念和群的线性表示理论、通过有限群群代数的不可约基介绍杨算符和置换群的表示理论、引入标量场, 矢量场, 张量场和旋量场的概念及其函数变换算符、以转动群为基础解释李群和李代数的基本知识和半单李代数的分类、由晶体的平移不变性出发讲解晶体对称性和晶体的分类. 《物理学中的群论: 有限群篇》附有习题, 与《物理学中的群论: 有限群篇》配套的《群论习题精解》涵盖了习题解答.
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当