《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
本书是综合性大学和高等师范院校数学系本科生数学分析课程的教材.全书共分三册. **册共六章, 内容为函数、序列的极限、函数的极限与连续性、导数与微分、导数的应用、不定积分; 第二册共六章, 内容为定积分、广义积分、数项级数、函数序列与函数项级数、幂级数、傅里叶级数; 第三册共五章, 内容为n维欧氏空间与多元函数的极限和连续、多元函数微分学、重积分与广义重积分、曲线积分与曲面积分及场论、含参变量的积分。本书每章配有适量习题, 书末附有习题答案或提示, 供读者参考. 作者多年来在北京大学为本科生讲授数学分析课程, 按照教学大纲, 精心选取教学内容并对课程体系优化整合, 经过几届学生的教学实践, 收到了良好的教学效果. 本书注重基础知识的讲述和基本能力的训练, 按照认知规律, 以几何直观、物理背景作为引入数学概念的切入
《数学分析(第1册)》是综合性大学和高等师范院校数学系本科生数学分析课程的教材。全书共分三册。册共六章,内容为函数、序列的极限、函数的极限与连续性、导数与微分、导数的应用、不定积分;第二册共六章,内容为定积分、广义积分、数项级数、函数序列与函数项级数、幂级数、傅里叶级数:第三册共五章,内容为n维欧氏空间与多元函数的极限和连续、多元函数微分学、重积分与广义重积分、曲线积分与曲面积分及场论、含参变量的积分。《数学分析(第1册)》每章配有适量习题,书末附有习题答案或提示,供读者参考。 作者多年来在北京大学为本科生讲授数学分析课程,按照教学大纲,精心选取教学内容并对课程体系优化整合,经过几届学生的教学实践,收到了良好的教学效果。《数学分析(第1册)》注重基础知识的讲述和基本能力的训练,按
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。 本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科
这是一部泛函分析教材。它系统地介绍线性泛函分析的基础知识。全书共分四章:度量空间;线性算子与线性泛函;广义函数与Coболев空间;以及紧算子与Fredholm算子。本书的主要特点是它侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其它分支的联系。书中包含丰富的例子与应用,对于掌握基础理论有很大帮助。 此书适用于理工科大学本科生与研究生阅读,并且可供一般的数学工作者、物理工作者、工程技术人员参考。为便于读者学习,本次重印书末增加了习题补充提示和索引,以供读者参考。
全书分三册出版。*册讲述函数、极限理论、一元函数微积分,第二册讲述实数理论、级数和反常积分,第三册讲述n维欧几里得空间中微积分和微分形式。一元部分较系统讲述了凸函数和上、下极限。分两步严格处理了实数与极限理论:一元微积分前严格讲述极限定义、性质、运算;一元微积分后,从空间的连通性、紧性、完备性观点讲实数定义和实数理论以及连续函数的基本定理。 本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题介绍解题基本方法和特殊技巧。 全书配有习题集,与教材同时出版。 本书由理科数学教材编审委员会函数论编审组委托欧阳光中副教授,董延闿教授复审,可作为综合大学、师范院校数学系教材或教学参考书。
本书比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是本书在数学思想方面的体现。 本书章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出普遍的表示形式。
全书分三册出版。*册讲述函数、极限理论、一元函数微积分,第二册讲述实数理论、级数和反常积分,第三册讲述n维欧几里得空间中微积分和微分形式。一元部分较系统讲述了凸函数和上、下极限。分两步严格处理了实数与极限理论:一元微积分前严格讲述极限定义、性质、运算;一元微积分后,从空间的连通性、紧性、完备性观点讲实数定义和实数理论以及连续函数的基本定理。 本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题介绍解题基本方法和特殊技巧。 全书配有习题集,与教材同时出版。 本书由理科数学教材编审委员会函数论编审组委托欧阳光中副教授,董延闿教授复审,可作为综合大学、师范院校数学系教材或教学参考书。
《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》重点介绍了有限元法的基本理论,内容包括能量原理、平面问题、杆件问题、空间及轴对称问题、板壳问题及结构动力学问题。 《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》讲述有限元法的基本原理及土木工程结构中的单元分析,单元类型包括平面杆系、空间杆系、平面等参元、空间等参元、薄板弯曲单元和厚薄板通用单元等。全书以论述结构线弹性静力分析为主,后介绍了结构的振动和动力响应分析。 《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》可作为高等院校土木工程专业本科生有限元法课程教材,也可供相关专业的科技人员参考。
本书是“十二五”普通高等教育本科*规划教材。 本书是《离散数学(第二版)》(刘任任、王婷、周经野主编,中国铁道出版社出版,2015年)的配套教材,对主教材中集合论与数理逻辑、图论与组合数学、代数结构与初等数论、形式语言与自动机理论基础等方面的习题进行了较详细的分析与解答,以帮助读者加深对基本概念、基本定理以及运算规律的理解。 本书适合作为高等院校计算机及相关专业的教材,也可供从事离散结构领域研究工作的人员参考。
本书的前身是北京大学数学系教学改革实验讲义。改革的基调是:强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律等)。从概念的引入到定理的证明,书中作了煞费苦心的安排处理,使传统的材料以新的面貌出现。书中还收人了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。 全书共三册。册的内容是:一元微积分,初等微分方程及其应用;第二册的内容是:一元微积分的进一步讨论,多元微积分;第三册的内容是:曲线、曲面与微积分,级数与含参变元的积分等。 本书可作为大专院校数学系基础课教材或补充读物,又可作为大、中学教师,科学工作者和工程技术人员案头常备的数
本书是以作者多年来为天津大学非数学类专业博士生讲授非线性数学课程的讲义为基础编写而成,内容包括:空间结构与映射、非线性泛函分析和现代变分法的基础、非线性动力系统基础知识、分岔与奇异性理论以及混沌和分形的基础知识。 本书注重相关概念和理论之间的联系,保持了较严谨的数学体系,将学习非线性理论基础知识与提高现代数学修养这两个目的有机结合,可供高等院校非数学类专业博士生或对数学要求较高的硕士生选用部分或全部内容作为教材或教学参考书,也可供有关教师或科技工作者参考。