《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
《北京高等教育精品教材:数学分析讲义(第2册)》可作为高等院校数学系攻读数学、应用数学、计算数学的本科生数学分析课程的教材或教学参考书,也可作为需要把数学当做重要工具的同学(例如攻读物理的同学)的教学参考书。《北京高等教育精品教材:数学分析讲义(第2册)》在2012年第2次重印时,对书中的练习题按小节进行了调整,并在书末增加了习题的提示,以减轻读者在做题时的难度。
《数学分析习题课讲义2》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
本书的编写注重数学分析理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重广度和梯度,达到从一题到一类,从一类到一系列的效果,本书内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学,同时注意吸收当前教材改革中成功的改革举措,使得所编教材更能适合当前教学的需要,适应时代的要求,体现创新的教学理念,有利于提高学生的综合素质和创新能力,成为既适应时代要求、符合改革精神,又继承传统优点的教材.本书内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等,各章配有习题,书末附有习题答案
全书分三册出版。*册讲述函数、极限理论、一元函数微积分,第二册讲述实数理论、级数和反常积分,第三册讲述n维欧几里得空间中微积分和微分形式。一元部分较系统讲述了凸函数和上、下极限。分两步严格处理了实数与极限理论:一元微积分前严格讲述极限定义、性质、运算;一元微积分后,从空间的连通性、紧性、完备性观点讲实数定义和实数理论以及连续函数的基本定理。 本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题介绍解题基本方法和特殊技巧。 全书配有习题集,与教材同时出版。 本书由理科数学教材编审委员会函数论编审组委托欧阳光中副教授,董延闿教授复审,可作为综合大学、师范院校数学系教材或教学参考书。
本书主要介绍计算机上常用的数值计算方法及相关的基本概念和理论。全书分为两个部分:部分为正文,共包含8章内容。第1章介绍算法及其基本特点和误差的基本概念;第2章至第8章介绍工程上常用的数值计算方法以及相关的基本理论。第二部分包含两个附录。附录I主要介绍当今流行的数学软件Maatlab在数值计算方法、*化方法以及数据处理等方面的应用;附录II为习题详解和参考答案。本书突出方法,突出应用。 本书可作为高等院校工科硕士、工程硕士生数值分析和数值计算方法课程的教材,也可供从事相关工作的科研人员和工程人员参考。
《数值*化方法》的内容包括求解光滑非线性无约束和有约束*化问题的基本方法和基本性质以及方法的数值试验结果。 《数值*化方法》在选材上, 注重*化方法的基础性与实用性; 在内容的处理上, 注重由浅入深、循序渐进; 在叙述上力求清晰、准确、简明易懂. 为了帮助读者理解和巩固所学的内容, 在第二章至第九章各章之后配置了丰富的习题和上机习题, 并在书末附有大部分习题的答案和提示。 《数值*化方法》可作为高等院校计算科学专业以及相关专业本科生的教材或教学参考书, 也可供从事科学与工程计算的科技人员参考。
《数学分析新讲(第二册)》的前身是北京大学数学系教学改革实验讲义。改革的基调是,强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律)。从概念的引入到定理的证明,书中作了然费苦心的安排,使传统的材料以新的面貌出现。书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。 《数学分析新讲》共三册。*册内容是:一元微积分,初等微分方程及其应用。 《数学分析新讲(第二册)》内容是:一元微积分的进一步讨论,广义积分,多元函数微分学,重积分。第三册内容是,微分学的几何应用,曲线积分与曲面积分,场论介绍,级数与含参变元的积分等。
《数学分析选讲》共分为七章,内容涉及极限理论、一元函数的连续性、一元函数微分学、一元函数积分学、级数理论和含参量积分、多元函数微分学与多元函数积分学等。内容的编排顺序基本上和通用的数学分析教材吻合。在素材选取的深度、难度和宽度上,比一般的数学分析基础教材有明显的提升。对较基础的知识点加以全面而简洁的罗列与梳理,对较常用且重要的结论加以辨析与分类,在系统总结数学分析的基本题型及其解题技巧的前提下,将重点放在解题思路的挖掘与提炼上,力求通过一些具有综合性、典型性、代表性的考研真题来*程度地适应考研读者的需要。每章节配备的习题的难度梯度明显,旨在拓宽基础、启发思维、熟练方法。
本书是“十二五”普通高等教育本科***规划教材。 本书是编者根据多年讲授离散数学课程的教学实践,并参考国内外同类教材编写而成的。为适应计算机科学发展的需要,本书增加了新的内容,其目的在于通过讲授离散数学中的基本概念、基本定理和运算及其在计算机科学与技术学科中的应用,培养学生的数学抽象能力、用数学语言描述问题的能力、逻辑思维能力以及数学论证能力。 本书力求概念阐述严谨,证明推演详尽,较难理解的概念用实例说明。 全书分四篇共24章,内容包括:集合论与数理逻辑、图论与组合数学、代数结构与初等数论、形式语言与自动机理论基础。本书有配套教材《离散数学题解与分析(第二版)》(刘任任主编,中国铁道出版社出版,2015年)。 本书适合作为高等院校计算机及相关专业的教材,也可供从事离散结构领域研究
《数学分析(上册)/普通高等教育“十二五”规划教材》的编写注重理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重选题的广度与梯度,达到从一题到一类,从一类到一系列的效果.《数学分析(上册)/普通高等教育“十二五”规划教材》内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学。《数学分析(上册)/普通高等教育“十二五”规划教材》内容包括映射与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数及其完备性、不定积分、定积分、定积分的应用和广义积分等。书后附有习题答案。
全书分三册出版。*册讲述函数、极限理论、一元函数微积分,第二册讲述实数理论、级数和反常积分,第三册讲述n维欧几里得空间中微积分和微分形式。一元部分较系统讲述了凸函数和上、下极限。分两步严格处理了实数与极限理论:一元微积分前严格讲述极限定义、性质、运算;一元微积分后,从空间的连通性、紧性、完备性观点讲实数定义和实数理论以及连续函数的基本定理。 本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题介绍解题基本方法和特殊技巧。 全书配有习题集,与教材同时出版。 本书由理科数学教材编审委员会函数论编审组委托欧阳光中副教授,董延闿教授复审,可作为综合大学、师范院校数学系教材或教学参考书。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加国内数学建横竞赛的人员参考。