本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
《数学分析习题课讲义2》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
《北京高等教育精品教材:数学分析讲义(第2册)》可作为高等院校数学系攻读数学、应用数学、计算数学的本科生数学分析课程的教材或教学参考书,也可作为需要把数学当做重要工具的同学(例如攻读物理的同学)的教学参考书。《北京高等教育精品教材:数学分析讲义(第2册)》在2012年第2次重印时,对书中的练习题按小节进行了调整,并在书末增加了习题的提示,以减轻读者在做题时的难度。
本书主要介绍计算机上常用的数值计算方法及相关的基本概念和理论。全书分为两个部分:部分为正文,共包含8章内容。第1章介绍算法及其基本特点和误差的基本概念;第2章至第8章介绍工程上常用的数值计算方法以及相关的基本理论。第二部分包含两个附录。附录I主要介绍当今流行的数学软件Maatlab在数值计算方法、*化方法以及数据处理等方面的应用;附录II为习题详解和参考答案。本书突出方法,突出应用。 本书可作为高等院校工科硕士、工程硕士生数值分析和数值计算方法课程的教材,也可供从事相关工作的科研人员和工程人员参考。
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
“数学分析”是数学专业的基础课,本书是根据安徽省师范院校数学专业学生的基础情况、教学背景等因素量身打造的数学专业课教材之一.教材内容是由讲授此课程多年的老师经过多次讨论商定的,其中包括一元微积分学、多元微积分学、级数理论等基础内容,分上、下两册.本书适合师范院校数学专业本科生使用,也可供各高校数学系教师参考.
《数学分析(上册)/普通高等教育“十二五”规划教材》的编写注重理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重选题的广度与梯度,达到从一题到一类,从一类到一系列的效果.《数学分析(上册)/普通高等教育“十二五”规划教材》内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学。《数学分析(上册)/普通高等教育“十二五”规划教材》内容包括映射与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数及其完备性、不定积分、定积分、定积分的应用和广义积分等。书后附有习题答案。
本书的编写注重数学分析理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重广度和梯度,达到从一题到一类,从一类到一系列的效果,本书内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学,同时注意吸收当前教材改革中成功的改革举措,使得所编教材更能适合当前教学的需要,适应时代的要求,体现创新的教学理念,有利于提高学生的综合素质和创新能力,成为既适应时代要求、符合改革精神,又继承传统优点的教材.本书内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等,各章配有习题,书末附有习题答案
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
《数学分析选讲》分为上、下两册.本书为上册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书.目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。 本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学.每章由基本概念分析和解题方法分析两部分组成.前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。 本书对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用.所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平.本书对从事数学分析和高等
《数值*化方法》的内容包括求解光滑非线性无约束和有约束*化问题的基本方法和基本性质以及方法的数值试验结果。 《数值*化方法》在选材上, 注重*化方法的基础性与实用性; 在内容的处理上, 注重由浅入深、循序渐进; 在叙述上力求清晰、准确、简明易懂. 为了帮助读者理解和巩固所学的内容, 在第二章至第九章各章之后配置了丰富的习题和上机习题, 并在书末附有大部分习题的答案和提示。 《数值*化方法》可作为高等院校计算科学专业以及相关专业本科生的教材或教学参考书, 也可供从事科学与工程计算的科技人员参考。
本书是“十二五”普通高等教育本科***规划教材。 本书是编者根据多年讲授离散数学课程的教学实践,并参考国内外同类教材编写而成的。为适应计算机科学发展的需要,本书增加了新的内容,其目的在于通过讲授离散数学中的基本概念、基本定理和运算及其在计算机科学与技术学科中的应用,培养学生的数学抽象能力、用数学语言描述问题的能力、逻辑思维能力以及数学论证能力。 本书力求概念阐述严谨,证明推演详尽,较难理解的概念用实例说明。 全书分四篇共24章,内容包括:集合论与数理逻辑、图论与组合数学、代数结构与初等数论、形式语言与自动机理论基础。本书有配套教材《离散数学题解与分析(第二版)》(刘任任主编,中国铁道出版社出版,2015年)。 本书适合作为高等院校计算机及相关专业的教材,也可供从事离散结构领域研究
《工科数学分析》分上、下两册。本书为其下册,共分四章,依次为:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分、向量场,无穷级数。每章均有供自学的综合性例题。 本书叙述详细,说理透彻,例题由浅人深,可作为工科大学一年级新生数学课教材,也可作为备考工科硕士研究生的人员和工程技术人员的参考书。
《数学分析新讲(第二册)》的前身是北京大学数学系教学改革实验讲义。改革的基调是,强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律)。从概念的引入到定理的证明,书中作了然费苦心的安排,使传统的材料以新的面貌出现。书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。 《数学分析新讲》共三册。*册内容是:一元微积分,初等微分方程及其应用。 《数学分析新讲(第二册)》内容是:一元微积分的进一步讨论,广义积分,多元函数微分学,重积分。第三册内容是,微分学的几何应用,曲线积分与曲面积分,场论介绍,级数与含参变元的积分等。