本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
《工科数学分析(下册)》是以*工科数学课程指导委员会颁布的高等工科院校本科《高等数学课程教学基本要求》为纲,在多年开设工科数学分析课程的基础上,广泛吸取国内外知名大学的教学经验而编写的《工科数学分析》课程教材.它是一门重要的基础理论必修课,不仅包含了一般理工科 高等数学 的全部内容,而且加强和拓宽了微积分的理论基础,注重无穷小分析思想的应用,在数学逻辑性、严谨性及抽象性方面也有一定的要求和训练。《工科数学分析(下册)》可作为理工科院校对数学要求较高的非数学类专业本科生教材,但如果略去理论性较强的部分和带*号的内容,其他专业也可以使用。
本书可作为理工科院校对数学要求较高的非数学类专业本科生教材。通过这门课的学习,使学生系统地获得一元与多元微积分及其应用、向量代数与空间解析几何、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,为学习后续课程和知识的自我更新奠定必要的数学基础;在传授知识的同时,培养学生比较熟练的运算能力、抽象思维和形象思维能力、逻辑推理能力、自主学习能力以及一定的数学建模能力,正确领会一些重要的数学思想方法,使学生受到用数学分析的基本概念、理论、方法解决几何、物理及其他实际问题的初步训练,以提高抽象概括问题的能力和应用数学知识分析解决实际问题的能力。
本书是Springer数学经典教材之一。本书延续了该系列书的一贯风格,深入但不深沉。材料新颖,许多内容是同类书籍不具备的。对于学习Banach空间结构理论的学者来说,这是一本参考价值极高的书籍;对于学习该科目的读者,本书也是同等重要。目次:schauder 基;C0空间和lp空间;对称基;O rlicz序列空间。 读者对象:数学专业高年级的学生、老师和相关的科研人员。
本书是俄罗斯莫斯科大学数学力学系现行的数学分析课程的教材。反映了作者较新的数学教学思想与方法。通过本书可了解近年来俄罗斯大学数学系的数学分析课的教学与改革的·隋况。全书共分四个部分21章。部分(-6章)为单变量函数的微分学,第二部分(第7-14章)为黎曼积分、多变量函数的微分学,第三部分(5-18章)为函数级数与参变积分,第四部分(9-21章)为多重黎曼积分、曲面积分。书末附有用于讨论班和考试的示范性问题和习题。 本书可供数学类专业的本科生、研究生、教师和研究人员参考使用。
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容涉及单变量微积分和级数。全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
《数值分析典型应用案例及理论分析》分为上、下两册,本书为下册。本书在上册基本理论编写基础上,就数值分析工程应用的案例进行了综合。与上册基本理论对应,本书案例分为8章,分别为递推法及其稳定性分析篇、函数计算 误差和相对误差分析篇、插值篇、拟合篇、线性方程组篇、非线性方程篇、数值积分篇、数值微分篇,内容涉及机械、液压、电力、电子、船舶、传热、力学、材料等工科学科。
偏微分方程的数值解法对于许多技术的发展都有着重要意义,而求偏微分方程的数值解已经成为并行计算机硬件和软件发展的目标;并行计算机性能的大大提高,使得以前很难处理的问题变得可以常规计算。 1997年6月9日~13日,IMA举行了一场关于偏微分方程的并行解的专题学术讨论会,本卷收录的论文即基于会上所作的演讲,其中主要是关于新的近似方法和能利用并行计算机的求解技术的发展及评述。本书论题主要包括区域分解方法、并行多重网格方法、向前跟踪方法、稀疏矩阵技巧、自适应方法、虚域方法及时间和空间离散方法。本书还讨论了各种方法分别在流体动力学、辐射传输、固体力学及半导体仿真中的应用。
本书是有关带裂纹的、动态的正交各向异性复合材料强度分析的专著。全书共分七章。章:在等价空间中,用Hankel积分求解正交各向异性板剪切型裂纹问题;第二章:正交各向异性板剪切型动态断裂问题;第三章:正交各向异性板动态剪切型应力强度因子的数值解;第四章:用BEM的虚拟位移法求解正交各向异性板混合型加载斜裂纹问题;第五章:正交各向异性板边裂纹问题的应力场、位移场及应力强度因子;第六章:纤维缠绕壳体的测地线方法及其结构设计理论的新思路;第七章:纤维增强复合材料动态特性及热变形。 本书可供宇航、船舶、建筑、复合材料等领域的科技工作者、高等院校教师及研究生参阅。
本书主要介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念、所谓“线性泛函的原理”即:Hahn-Banach定理、开映象与闭图像定理以及共鸣定理(一致有界原理),Hilbert空间的基本内容,的可分空间(改范)等价于C[a,b]以及严格凸空间,(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。本书的创新之处在于把赋范空间、赋准范空间和赋拟范空间结合起来进行深入讨论(特别是创造了许多有趣的反例说明它们的差异点)。 本书适合高校数学专业师生及相关专业科研人员阅读参考。
这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。