本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
《高等数学习题集精品系列·数学分析例选:通过范例学技巧》通过解答一些特别挑选的范例(共153个题或题组)来提供数学分析习题的某些解题技巧,还给出了20世纪60年代以来的某些研究生入学试题及多种国外资料的杂题(共200个题或题组)。《高等数学习题集精品系列·数学分析例选:通过范例学技巧》包含问题总数超过600个,其中大约450个给出解答或提示。这些例题和杂题有一定的难度。
《理论数值分析(第3版)》旨在为读者提供一个基于泛函分析并专注于数值分析的数学框架,让读者更好地学习数值分析和计算数学,及早进入科研项目。本教程包括了泛函分析、逼近理论、傅里叶分析和小波等诸多基础专题,每个专题的表述既能了解该科目,又可以达到一定的深度,特别专题的参考文献都列于每章末,供读者深入学习和研究。由于现实问题的往往是多相关的,多变量多项式在研究和应用中扮演着重要的角色,第三版中就此专题新增了一章。
《数值分析(第3版)》着重介绍适合于电子计算机上采用的数值计算方法及其理论,内容包括误差分析、非线性方程求根、线性代数方程组数值解法、多项式插值与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程数值解法等。 《数值分析(第3版)》内容覆盖了*工科研究生数学课程教学指导小组所制订的工科硕士生数值分析课程教学基本要求,同时还增加了一些工科专业所需要的内容,如机器数系、有理函数插值、振荡函数积分等。书中对各种计算方法的构造思想都作了较详细的阐述,对稳定性、收敛性、误差估计以及算法的优缺点等也作了适当的讨论。 《数值分析(第3版)》还挑选了部分东南大学工科研究生结合各自专业自选课题的计算实习,以此作为《数值分析(第3版)》各章的应用实例。 《数值分析(第3版)》可作
“数学分析”是数学专业的基础课,本书是根据安徽省师范院校数学专业学生的基础情况、教学背景等因素量身打造的数学专业课教材之一.教材内容是由讲授此课程多年的老师经过多次讨论商定的,其中包括一元微积分学、多元微积分学、级数理论等基础内容,分上、下两册.本书适合师范院校数学专业本科生使用,也可供各高校数学系教师参考.
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加国内数学建横竞赛的人员参考。
本书的编写注重数学分析理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重广度和梯度,达到从一题到一类,从一类到一系列的效果,本书内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学,同时注意吸收当前教材改革中成功的改革举措,使得所编教材更能适合当前教学的需要,适应时代的要求,体现创新的教学理念,有利于提高学生的综合素质和创新能力,成为既适应时代要求、符合改革精神,又继承传统优点的教材.本书内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等,各章配有习题,书末附有习题答案
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
本书是“十二五”普通高等教育本科*规划教材。 本书是《离散数学(第二版)》(刘任任、王婷、周经野主编,中国铁道出版社出版,2015年)的配套教材,对主教材中集合论与数理逻辑、图论与组合数学、代数结构与初等数论、形式语言与自动机理论基础等方面的习题进行了较详细的分析与解答,以帮助读者加深对基本概念、基本定理以及运算规律的理解。 本书适合作为高等院校计算机及相关专业的教材,也可供从事离散结构领域研究工作的人员参考。
The controllability and observability are of great importance in boththeory and applications. A complete theory has been established for linearhyperbolic systems, in particular, for linear wave equations. There havealso been some results for semilinear wave equations. For quasilinearhyperbolic systems that have numerous applications in mechanics, physicsand other applied sciences, however, very few results are available evenwith space dimension one. This monograph is based mainly on the results obtained by the author andhis collaborators in recent years. By mea~s of the theory on the semi-globalclassical solution, a simple and direct constructive method is presentedin a systematic way to get both the controllability and observability in theframework of classical solutions for general first order 1-D quasilinearhyperbolic systems with general nonlinear boundary conditions.Corresponding applications are given for 1-D quasilinear wave equationsand for unsteady flows in a tree-like network of open can
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。