《数学解题与研究丛书:集合、函数与方程》是一部数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些的案例尽可能避免。《同调论(第2版)》最终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不动点
本书通过深入分析现有复杂决策问题的特征,在检索大量国内外资料,跟踪国际前沿技术的基础上,应用多学科交叉技术,将粗糙集理论引入经典的多属性决策方法中,并将管理学、人工智能、信息科学等知识相融合。在系统观点指导下,针对经典多属性决策方法中存在的严格假设问题,重点研究了粗糙集属性约简理论、粗集分类、奇异粗集等理论在经典的多属性决策理论与方法,经过模拟、试验和算例验证了该方的有效性,具有重要的理论意义和应用价值。本书可作为高等院校运筹学、管理科学、信息科学和系统工程专业的研究生教材,也可作为相关领域研究人员、工程技术人员、管理干部、教师和学者的参考书。
Thisbookdiscussesthetheoryofagrowthcurvemodel(GCM)withparticularemphasisontatisticaldiagnostics,whichismainlybasedonrecentworkondiagnosticsmadebytheauthorsandtheircollaborators.ThisbookisintendedforresearcherswhoareworkingintheareaoftheoreticalstudiesrelatedtotheGCMaswellasmultivariatestatisticaldiagnostics,andforappliedstatisticiansworkinginapplicationoftheGCMtopracticalareas.
本书共分五章:章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。第二章建立拓扑度理论,不仅建立了重要的有限维空间连续映象Brouwer度和Banach空间全连 续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A-proper映象的广义拓扑度。第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。第四章主要证明强制半连续单调映象的满射性和强制多值极大单调映象的满射性。第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minimax原理和MountaiPass引理等。书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。本书可作为综合性大学和师范学院数学系研究生的
《麦卡锡函数和阿克曼函数——从一道前南斯拉夫数学奥林匹克试题谈起》从一道前南斯拉夫数学奥林匹克试题谈起,以粗犷的线条,简明的介绍了麦卡锡函数、阿克曼函数及递归函数。通过对小试题的讨论,展示给读者一个关于数理逻辑的大世界,是一本通向数理逻辑殿堂的桥梁之作。《麦卡锡函数和阿克曼函数——从一道前南斯拉夫数学奥林匹克试题谈起》由刘培杰、康大臣编著。
本书由两部分组成,部分为函数基本问题及其解法;第二部分为入学试题的变形(2003年至2006年)。本书适合大这生、中学生及数这爱好者使用。
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
本书在读者已有微积分学和线性代数等基础知识的基础上比较详细地介绍了泛函分析的基础理论及其应用,包括kbesgue测度与Lebesgue积分的理论基础;度量空间的基本概念;赋范线性空间和Banach空间的基本概念;Banach空间的基本理论;不动点定理及其应用;内积空间和Hilbert空间的基本概念和基本理论;线性算子谱理论基础;非线性算子的理论基础和Banach空间中的微积分学;上下解方法及其应用和拓扑度理论及其应用。本书适合高等院校数学类专业(包括军事院校数学类合训专业)高年级学生和理工专业硕士/博士研究生学习和研究之用,也可供高校教师教学和科研参考。
《偏微分方程》共分八章:章为绪论;第二、三章分别介绍了一阶方程、具有两个自变量的二阶方程的基本知识;第四、五、六章分别介绍了三类基本方程:波动方程、热传导方程和Laplace方程的定解问题的适定性、求解方法及解的性质;第七章主要介绍了一阶拟线性双曲守恒律方程组的一些基本知识;第八章介绍了Cauehy-Kovalevskaya定理。另有两个附录:Fourier反演公式;Li-Yau估计。《偏微分方程》不仅把注意力集中在传统的偏微分方程基础知识上,而且还有目的地介绍一些当代数学知识,譬如在几何分析中具有重要作用的Li-Yau估计和Hamack不等式等。《偏微分方程》的另一特点是,除在每节后面为读者准备了一些习题之外,还在一些章节后面为读者准备了一些思考题和“开放问题(openproblem)”。这些问题具有的启发性,对提高学生对本门课程的学习兴趣有很大帮助。