本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书为普通高等教育“十二五”规划教材。全书共九章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换,数学软件在复变函数与积分
本书是与高等教育出版社出版的程其襄等编写的《实变函数与泛函分析基础》第四版配套的学习指导书,按照教材体例,逐章对应编写。全书分为两部分。 部分是学习指导,每章包括主要概念、主要定理与结论、典型例题精解、习题解答和补充习题等内容;第二部分是补充习题解答与提示。 本书可作为师范类院校数学系各专业学生、自学读者、函授学员以及其他高等学校有关读者学习实变函数与泛函分析的辅导书,也可作为教师授课的参考书。
本书是与高等教育出版社出版的程其襄等编写的《实变函数与泛函分析基础》第四版配套的学习指导书,按照教材体例,逐章对应编写。全书分为两部分。 部分是学习指导,每章包括主要概念、主要定理与结论、典型例题精解、习题解答和补充习题等内容;第二部分是补充习题解答与提示。 本书可作为师范类院校数学系各专业学生、自学读者、函授学员以及其他高等学校有关读者学习实变函数与泛函分析的辅导书,也可作为教师授课的参考书。
本书是与高等教育出版社出版的程其襄等编写的《实变函数与泛函分析基础》第四版配套的学习指导书,按照教材体例,逐章对应编写。全书分为两部分。 部分是学习指导,每章包括主要概念、主要定理与结论、典型例题精解、习题解答和补充习题等内容;第二部分是补充习题解答与提示。 本书可作为师范类院校数学系各专业学生、自学读者、函授学员以及其他高等学校有关读者学习实变函数与泛函分析的辅导书,也可作为教师授课的参考书。
本书首先介绍了集合论和拓扑学的基础知识,然后结合微积分的发展简史与不完善之处,从分析学的角度系统地介绍了实变函数的基本理论框架。全书所列内容均由作者多年讲义结合国际上近期新的《实分析》教材内容整理而成
本书为复变函数,在科学出版社出版,适合理工类院校大一,大二本科生使用。本书为复变函数,在科学出版社出版,适合理工类院校大一,大二本科生使用。本书为复变函数,在科学出版社出版,适合理工类院校大一,大二本
南秀全编著的《极值与 值(下卷)/南秀全初等数学系列》共分4章。介绍了如何运用冻结变量求极值,并阐述了极值与 值的相关应用。 本书适合中学师生及广大数学爱好者阅读学习。