几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
这本小册子也是一本问题集。前面有8章,每章都有许多例题与问题, 还有一章研究问题,一章未解决的问题。 章与章之间无前因后果的关系,而且除第1章(系统介绍一个问题)外,各章内部的例题亦无太多的联系。实际上组合数学,特别是组合几何,并无统一的方法,不同的问题往往需要进行不同的处理。这 不意味组合几何是一盘散沙,这各具个性的问题与方法,恰好形成组合几何鲜明的特点。正因为有众多的问题,而且没有固定的方法,组合几何吸引了许多数学家(包括专业与业余两方面)的浓厚兴趣。
本书的内容是初等的,以平面几何中的不等式为主,全书共分为8章,前面用的是几何方法,后面则要用到一些代数、三角的知识, 一章是立体几何中的不等式,各章之间虽有联系,但是并没有的依赖关系,因此读者可以根据自己的需要,选读某几章或某些例题。 本书有习题100多个,分散在各章,有的习题是该章内容的补充,有的是定理或例题的应用,也有若干难度稍大、可供讨论的问题,习题均有扼要的解答或提示。
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
《微分几何讲义/新世纪高等学校规划教材·数学系列》为高等学校微分几何教材,可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。
《几何变换(2)》主要讨论的是几何中的相似变换,内容大致可分为两部分:在前一部分中,作者首先讨论中心相似、螺旋相似和膨胀反射等变换,并仔细分析了它们的特征性质,在此基础上,给出了相似变换的完全分类;后一部分着重介绍保距变换和相似变换的许多有趣的应用。 《几何变换(2)》内容丰富,重点突出,讲述富于启发性,在每个新概念引进或在主要定理的证明之后,都配有数量的习题,书后附有习题的详细解答。 《几何变换(2)》可供中学生、大学低年级学生、中学教师以及广大数学爱好者阅读参考。
代数几何是数学中的一个重要分支,外很多著名的数学家都从事过对它的研究。本书从一道IM0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的IM0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。 本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
本书从外各级数学竞赛中精选提炼出百余道具有典型性的平面几何试题,分为十种题型,各题型由易到难分为A,B,C三类。每道题都有多种解法。在解题方法的使用上,更注重于常规的平面几何方法,每道题都有作者的解法,突出了“新颖”一词。本书以大量的具体的事例说明:可以采用常规的而又灵活的方法,简洁地解决平面几何难题,有利于拓展读者的视野,开启读者的思维,扎实地训练读者的基本功。 本书适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也适合于平面几何爱好者使用。
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。 本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
代数几何是数学中的一个重要分支,外很多著名的数学家都从事过对它的研究。本书从一道IM0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的IM0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。 《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。 《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生教材,
《微分几何讲义/新世纪高等学校规划教材·数学系列》为高等学校微分几何教材,可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。
《微分几何讲义/新世纪高等学校规划教材·数学系列》为高等学校微分几何教材,可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。
《几何原本》共有十三卷,其中卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;最后讲述立体几何的内容。从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。 《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。 《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生教材,
本书将向介绍10种解图形题的分析思考方法。它们像10把钥匙,好让你打开“几何王国”的大门。 的科学家富兰克林又说过:“懒惰像生锈一样,比操劳更能消耗身体。经常用的钥匙总是亮闪闪的。”有了钥匙,就要经常用。基于此,这本书里介绍的每一种分析思考方法后面,都附有思考性较强的例题和习题。请你先认真看懂例题,边看边想,掌握分析思考方法,然后再做练习,试试一你能不能用这把“钥匙”去“开门”。 “几何王国”既是一个神奇的世界,也是一个创造者的乐园。通过思考、解题、探索,你会领略到数学大花园的千姿百态,体味到数学思想的灵巧和美妙!
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。 本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。 本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
本书从外各级数学竞赛中精选提炼出百余道具有典型性的平面几何试题,分为十种题型,各题型由易到难分为A,B,C三类。每道题都有多种解法。在解题方法的使用上,更注重于常规的平面几何方法,每道题都有作者的解法,突出了“新颖”一词。本书以大量的具体的事例说明:可以采用常规的而又灵活的方法,简洁地解决平面几何难题,有利于拓展读者的视野,开启读者的思维,扎实地训练读者的基本功。 本书适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也适合于平面几何爱好者使用。