《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(下卷)(提高篇)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(下卷)(提高篇)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书从国内外各级数学竞赛中精选提炼出百余道具有典型性的平面几何试题,分为十种题型,各题型由易到难分为A,B,C三类。每道题都有多种解法。在解题方法的使用上,更注重于常规的平面几何方法,每道题都有作者首创的解法,突出了“新颖”一词。本书以大量的具体的事例说明:可以采用常规的而又灵活的方法,简洁地解决平面几何难题,有利于拓展读者的视野,开启读者的思维,扎实地训练读者的基本功。 本书适合于优秀的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也适合于平面几何爱好者使用。
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
内容简介:本书从14个方面介绍了各类范例200余道一题多证(解).主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧. 本书内容适合初高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的 竞赛数学 或 初等数学研究 等课程的数学参考书.
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
本书以点集拓扑核心内容为基础,从经典拓扑和内蕴拓扑的应用出发,结合理论计算机科学和信息科学等进一步阐述无点化拓扑、Domain理论、数字拓扑与数字图像信息处理、形式概念分析与广义近似空间理论(粗糙集理论)、宇宙拓扑模型等。全书共12章。第1?3章是点集拓扑的经典内容;第4章为范畴论基本概念和无点化拓扑;第5?8章是序结构理论及拓扑学在Domain理论中的应用;第9章是数字拓扑及在数字图像处理方面的应用;第10章是关于形式背景的序结构和拓扑理论;第11章是广义近似空间和抽象知识库的拓扑理论;第12章是对宇宙空间拓扑模型的探讨等。
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备性与完备化,商空间与商映射,函数空间,同伦映射与空间的同伦等价。每讲内容介绍都比较深入,并配备大量的例题和习题。
微分几何是20世纪*重要且*富生命力的数学分支,其历史可追溯到牛顿时代的微积分学,19世纪几何学变革中它获得了历史性进步,其中高斯作出了奠基性贡献。本书将高斯的内蕴微分几何学与其非欧几何学研究视为一个完整统一的思想体系,深入研究高斯的内蕴微分几何学思想与非欧几何学思想产生的历史背景与内在联系。主要内容有:高斯内蕴微分几何学的思想渊源;高斯的非欧几何学研究;高斯内蕴微分几何学的创立;高斯内蕴微分几何学的基本思想 《关于曲面的一般研究》之研究;高斯的几何学思想及其意义;高斯非欧几何学思想的实现途径;高斯-博内-陈定理的历史发展及其意义等。本书为18世纪末19世纪初几何学发展的历史研究提供了一个新的视角。 本书适合于数学专业大学生、研究生及有关教师阅读,特别是对近现代数学史(微分几何学)感兴趣的