《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。
本书源于作者多年在密歇根大学教授回归分析的课程讲义,从基本的统计概念讲起,对线性回归分析的基本假定、回归中的统计推论和回归诊断做了详尽的介绍,同时还涵盖了很多在社会科学中对实际研究非常有用的内容,包括虚拟变量、交互作用、辅助回归、多项式回归、样条函数回归和阶跃函数回归等。此外,本书还涉及通径分析、纵贯数据模型、多层线性模型和Iogit模型等方面的内容。
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。