这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
无
本书介绍非参数统计的基本概念和方法,其内容包括:预备知识,U统计量,基于二项分布的检验,列联分析,秩检验,检验的功效与渐近相对效率,概率密度估计,非参数回归.每一章内容都着重阐述非参数统计推断的一般处理技术和原则,并给出一些典型例子.各章后面的习题侧重于应用.本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可能简化公式推导并淡化理论证明.此外本书有选择地安排一些模拟计算和实际数据分析,其主要程序放在附录A中.《BR》 读者只需具有高等数学和概率统计的基本知识即可读懂本书的主要内容.
具有复杂时空结构的数据很普遍,这类分层结构数据的分析方法很快应用到各研究领域,本书全面、系统、严格地阐明分层分位同归建模理论与方法,并尽力反映复杂分层数据分析国际前沿研究。内容涉及分层线性分位回归模型、分层广义线性分位回归模型、分层非线性分位回归模型、分层半参数分位同归模型等该领域前沿课题。
《牛津大学研究生教材:塑性数学理论(英文)》假设读者熟悉弹性理论的基本知识。附录给出了两个数学技巧,即下标及求和约定和双曲微分方程的解,也许大多数工程师并不熟悉它们。个可以迅速掌握,这是为了简化应力一应变关系的讨论而必须采用的。第二个在力学的很多分支都会出现,该方法的好处是简单和直接。
《非线性系统自学习控制:自适应动态规划方法(英文版)》presents a class of novel, self-learning, optimal control schemes based oadaptive dynamic programming techniques, which quantitatively obtaithe optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. Whethe system model is known, self-learning optimal control is designed othe basis of the system model; whethe system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to plement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students icontrol science and engineering.
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
该书通过重点介绍现代概率论的分析思路与其所用的分析工具之间的相辅相成的关系,相当详细地介绍了现代概率论。第2版中的练习题超过750道,并且对Levy过程、大偏差理论、Banach空间上的Gauss测度、Wiener测度与偏微分方程的关系等添加了许多新的素材。书的第1部分介绍了独立随机变量、中心极限现象、弱收敛性的通用理论及其几种应用,以及关于函数空间上的Gaussian和Markovian测度理论。
本书是数理统计方面的经典教材,从数理统计学的初级基本概念及原理开始,详细讲解概率与分布、多元分布、特殊分布、统计推断基础、极大似然法等内容,并且涵盖一些 主题,如一致性与极限分布、充分性、 假设检验、正态模型的推断、非参数与稳健统计、贝叶斯统计等.此外,为了帮助读者 好地理解数理统计和巩固所学知识,书中还提供了一些重要的背景材料、大量实例和习题. br>本书可以作为高等院校数理统计相关课程的教材,也可供相关专业人员参考使用.
本书主要介绍了处理反问题(不适定问题)的统计方法,尤其侧重于建模与计算这两大问题。与经典文献中处理反问题的方法不同,本书立足于Bayes统计学的框架,将所有变量都视作随机变量,并把反问题的解以概率密度函数的形式给出。同时,对于数学模型本身存在的误差和数值离散导致的额外误差,本书还创造性地进行了源自建模误差的统计分析。 本书详细讨论了先验模型的构造、测量噪声建模、Bayes估值以及非静态统计反演方法等,并引入Markov链Monte Carlo方法以及最优化方法来探究概率分布。另外从Bayes统计学的角度重新研究了经典正则化方法,揭示了两者之间的关系。对于书中得到的结论和涉及的技法,作者还佐以易懂但深刻的例子帮助读者理解。本书将统计方法应用到一些较为前沿的问题中,例如离散误差分析、模型降阶等。在书中,这些统计方法还被
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键,《迭代方法和预处理技术(上册)》系统而深入地介绍了迭代方法、预处理技术及其并行计算,迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、多层和多重网格预处理、问题相关预处理以及非线性预处理;为了方便实施,介绍了迭代方法和预处理技术在诸多方面的应用,并用统一框架介绍了网上可得到的解法器和预处理软件包。 《迭代方法和预处理技术》可用作并行数值方法等相关专业的硕士和博士研究生教材,也可作为关心代数方程组高效求解的科研人员的参考书。
本书介绍非线性时间序列理论和方法的一些*研究成果,尤其以近十年来发展起来的非参数和半参数技术为主。本书不仅对这些技术在时间序列状态空间、频域和时域等方面的应用给出了详细的介绍,同时,为了体现参数和非参数方法在时间序列分析中的整合性,还系统地阐述了一些主要参数非线性时间序列模型(比如ARCH/GARCH模型和门限模型等)的近期研究成果。此外,书中还包含了一个对线性ARMA模型的简洁介绍。为了说明如何运用非参数技术来揭示高维数据的局部结构,本书借助了很多源于实际问题的具体数据,并注重在这些例子的分析中体现部分的分析技巧和工具。阅读本书只需要具备基础的概率论和统计学知识。本书适用于统计专业的研究生、面向应用的时间序列分析人员以及该领域的各类研究人员。此外,本书也对从事统计学的其他分支以及经济计量学、
本书旨在系统论述数理统计的基本理论,并在论述中尽可能反映这一学科的近期发展。全书内容包括点估计、假设检验、区间估计和Bayes 统计决策的基本理论和方法,并用较大篇幅论述了包括大样本估计和大样本检验在内的统计渐近理论,其中涉及经验过程的一些初步知识及其在渐近分布理论中的应用。 本书第五章讲述了一个用经验过程方法构建的大样本分布理论的完整事件,系统、简洁而又不失严谨,是本书*特色的章节之一。 本书可作为数理统计和相关专业研究生的教科书,也可用作相关专业人士的教学、研究参
本书属于数学概览系列,选编了杰出数学家Robert Langlands的综述性文章,介绍了Langlands纲领的起源和发展及其创始人的数学生活。Langlands纲领将看似无关的学科如数论、分析、代数和几何联系在一起,揭示了所有数学的深层结构,并提供了解决棘手问题的新方法,现在经常被描述为“大统一数学理论”。本书由季理真选文,征求了作者和其他著名数学家的意见,并可 获得无偿的专有出,大多数文章还有作者本人及其他数学家的评论。 书中所涉及的内容称得上是20世纪数学上重要的成就之一,但大部分都是思想性的文章,并非对某个定理的详细证明,有利于读者更快地一览当代数学的前沿。透过书中的内容,读者可以体会Langlands如何看待数学并提出Langlands纲领。Langlands教授还亲自为本书撰写了很长的自序,分享了他的数学生涯,其对所关心的数学的想法和热情也对年
《论九点圆》共两章,章介绍了三角形九点圆的出处、定名、归属和发展到圆锥曲线上等问题.第2章介绍了十几种有启发性的证法和二百多个说明,从证法和说明中给出了图形变换的性质和一些三角形九点圆的推广,以及与三角形九点圆相关定理推广的一些新性质,故三角形九点圆与其他命题浓厚的关系,把三角形九点圆推入由浅入深的境地,从侧面也介绍了“三圆几何”的一些性质,故“三圆几何”的所有性质对于三角形九点圆都成立。 《论九点圆》可供数学教师和数学爱好者阅读和收藏。