《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
无
本书介绍非参数统计的基本概念和方法,其内容包括:预备知识,U统计量,基于二项分布的检验,列联分析,秩检验,检验的功效与渐近相对效率,概率密度估计,非参数回归.每一章内容都着重阐述非参数统计推断的一般处理技术和原则,并给出一些典型例子.各章后面的习题侧重于应用.本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可能简化公式推导并淡化理论证明.此外本书有选择地安排一些模拟计算和实际数据分析,其主要程序放在附录A中.《BR》 读者只需具有高等数学和概率统计的基本知识即可读懂本书的主要内容.
具有复杂时空结构的数据很普遍,这类分层结构数据的分析方法很快应用到各研究领域,本书全面、系统、严格地阐明分层分位同归建模理论与方法,并尽力反映复杂分层数据分析国际前沿研究。内容涉及分层线性分位回归模型、分层广义线性分位回归模型、分层非线性分位回归模型、分层半参数分位同归模型等该领域前沿课题。
《非线性系统自学习控制:自适应动态规划方法(英文版)》presents a class of novel, self-learning, optimal control schemes based oadaptive dynamic programming techniques, which quantitatively obtaithe optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. Whethe system model is known, self-learning optimal control is designed othe basis of the system model; whethe system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to plement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students icontrol science and engineering.
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
《数学圈1》包括从懂数学的乌鸦到个女数学家、从阿育王的石柱到费马的笔记、从小人物到拿破仑、从集邮上的阿贝尔到课堂上的维纳等章节。
《泊松点过程:成像、跟踪和感知》提出了一种学习泊松点过程(PPP)的结构性方法,结构性的定义较公理更易于理解。它能够使有数学能力的读者在不借助公理化的测度论方法的情况下,获得对PPP的理解和方法。 全书共9章,分为3部分。部分的2~4章是数学基础,介绍泊松点过程、强度估计及其克拉默-拉奥界。第2部分的5~7章是本书的重点,着眼于泊松点过程的三个重要应用主题,即断层成像、目标跟踪和分布感知,其中的目标跟踪内容反映了的研究进展。第3部分的8~9章给出了泊松点过程的其他点过程,作为进一步的研究方向。本书也反映了作者长期从事声呐技术研究的理论成果和实践。 《泊松点过程:成像、跟踪和感知》可作为高年级本科生、研究生的参考书,也可供相关领域(如断层成像、目标跟踪和分布检测等)的科研人员和工程人员阅读。
《现代数学基础丛书·典藏版73:调和分析及其在偏微分方程中的应用(第二版)》内容涉及调和分析的经典理论,特别是与偏微分方程研究密切相关的方法与技巧。例如:C-Z奇异积分算子、Littlewood-Paley理论、抽象插值方法、可微函数空间的调和分析刻画等。同时着力于用调和分析的方法研究偏微分方程,为此,详细讨论了振荡积分理论、Fourier限制型估计及相应的Strichartz估计、Keel-Tao端点时空估计等。借助于调和分析的现代理论与方法,研究了波动及色散方程的Cauchy问题的适定性、低正则性与散射性理论。第二版对一些内容进行了增删,诸如:增加了发展型方程的调和分析方法的研究背景、非线性Klein-Gordon方程的低正则性,删除了波动方程的散射性。重新改写了一些章节,增加了许多注记,以反映这一领域的新进展。《现代数学基础丛书·典藏版73:调和分析及其在
本书是我为大连理工大学应用数学系研究生讲授现代分析的讲义。由于部分学生未学过曲面上的微分几何,因此在第1章中扼要地介绍了曲面上微分几何的基本内容。第2章讲微分流形和张量,第3章讲流形上的微积分。出版时增加了绪论和诗化微分几何、相对论中的数学原理、数学机械化的基本原理部分,在其中主要讲作者个人的一些观点。 传统的数学教科书采用定义定理证明的模式,即DTP模式。本书也采用了这种模式。这种模式严格,有不可替代的优点,但是也有缺点。初学者容易陷入大量的推导之中,不易理解数学的精神实质。这套数学语言像音乐中的五线谱,五线谱严格,但缺乏音乐修养的人,只看五线谱很难在头脑中形成旋律。数学中也有类似的情形。
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe with jaun- diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory.For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequ
In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.