如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘
《金融数学》较系统地介绍金融数学中的一些核心理论知识, 内容包括金融产品介绍、期权定价的离散模型 二叉树模型、随机积分与布朗运动、期权定价的连续模型 欧式期权定价的Black-Scholes 模型及其推广、数值计算与模拟 蒙特卡罗方法和有限差分方法、奇异期权的介绍和数值解法、利率与债券模型等. 每章*后还配备适量的相关习题. 为了便于在实际中直接应用模型, 相关章节数值计算中还给出了代码实现思路, 读者可以自行利用 MATLAB 软件在计算机上实现.
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加外数学建模竞赛的指导用书。
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和最小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;最后第11章致力于变分方法在具体工程问题中的应用。
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。
本书针对微观经济计量分析做出了详细研究,内容涉及对揭示个体或厂商经济行为的个体层面数据加以分析。 本书旨在为应用研究者提供一种综合的统计方法,以及将其用于现代微观经济计量领域的研究方法。 本书适合从事相关研究工作的人员参考阅读。
本书针对微观经济计量分析做出了详细研究,内容涉及对揭示个体或厂商经济行为的个体层面数据加以分析。 本书旨在为应用研究者提供一种综合的统计方法,以及将其用于现代微观经济计量领域的研究方法。 本书适合从事相关研究工作的人员参考阅读。