本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
本书较系统地介绍了科学与工程计算中常用的数值计算方法,并结合 基本理论与实际应用,对这些方法作了简要分析.全书共8章,内容包括误差、函数插值、曲线拟合、数值积分与数值微分、方程求根、线性方程组的数值解法、矩阵特征值和特征向量的计算、常微分方程的数值解法等.每章都选有数量的例题和习题,供学生练习、提高. 本书可作为高等学校数学教育、数学与应用数学、信息与计算科学、应用物理及计算机科学等专业的教材,也可供从事科学与工程计算的科技工作者参考.
本书较系统地介绍了科学与工程计算中常用的数值计算方法,并结合 基本理论与实际应用,对这些方法作了简要分析.全书共8章,内容包括误差、函数插值、曲线拟合、数值积分与数值微分、方程求根、线性方程组的数值解法、矩阵特征值和特征向量的计算、常微分方程的数值解法等.每章都选有数量的例题和习题,供学生练习、提高. 本书可作为高等学校数学教育、数学与应用数学、信息与计算科学、应用物理及计算机科学等专业的教材,也可供从事科学与工程计算的科技工作者参考.
本书按照工科数学《数值计算方法课程教学基本要求》编写,介绍了计算机上常用的数值计算方法以及有关的基本概念与理论。内容取材适当,主要方法给出程序框图(或算法)与数值例子,每章有小结与适量习题,书末还有上机习题。习题均给出答案。 本书经工科数学课程教学指导委员会评选通过,可作为工科本科各专业的数值计算方法课程的教材,也可供工程技术人员参考。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。 本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中最近兴起的粒子群算法处理多目标问题的理论方法与应用示例。 本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。 本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
lanczos方法是20世纪计算数学方向最有影响的方法之一,并且已经在工程中得到了广泛应用. 《lanczos方法:演变与应用》兼顾了lanczos方法的理论演变和工程中的实际应用,其内容分为两部分:部分阐述了方法的演变,并提供了具体算法;第二部分讨论了工业中的实际应用,包括常用的模态分析、复特征值分析、频率响应分析以及线性系统问题的求解.对于应用数学和工业工程专业的研究人员,以及工程计算领域的工程师,《lanczos方法:演变与应用》是一本很有价值的参考书.
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
本书较系统地介绍了科学与工程计算中常用的数值计算方法,并结合 基本理论与实际应用,对这些方法作了简要分析.全书共8章,内容包括误差、函数插值、曲线拟合、数值积分与数值微分、方程求根、线性方程组的数值解法、矩阵特征值和特征向量的计算、常微分方程的数值解法等.每章都选有数量的例题和习题,供学生练习、提高. 本书可作为高等学校数学教育、数学与应用数学、信息与计算科学、应用物理及计算机科学等专业的教材,也可供从事科学与工程计算的科技工作者参考.
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答, 部分题目还给出了多种解法. 内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
本书可作为大学数学、力学和计算机等专业的“计算方法”教材以及理工科硕士研究生的“数值分析”教材。本教材介绍计算机上常用的数值计算方法,主要包括非线性方程求根、线性代数方程组直接法和迭代法、插值逼近、拟合逼近、数值微积分和常微分方程数值解等内容。全 书深入浅出,层次分明,部分理论证明和全书内容独立,便于根据不同学时和要求进行取材和教学。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
本书系统阐述了数值分析的基本概念和理论,内容包括:数值计算的误差,解线性方程组的直接法和迭代法,线性方程组的二乘解,矩阵特征值问题,插值法,函数逼近,曲线拟合,数值积分,解非线性方程和方程组的数值方法。 本书适合高等院校信息与计算、数学、应用数学、计算机应用等专业的本科生作为教材,也可供工程技术人员参考。
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
对于历届诺贝尔经济学奖得主,本书首先说明他们的获奖工作,并给出了他们的照片和生平简介;然后介绍了他们的获奖工作与数学之间的联系;最后介绍一个或几个相关的数学逻辑。 读者对象:数学、经济管理以及财经等专业的大学生,也可供相关专业的科研和教学人员参考,
《累积法理论》在介绍数理统计的基本概念、参数估计理论、二乘估计和联立方程式的数量分析等内容的有关理论知识的基础上,系统地提出累积法估计理论,即建立了一种新的估计一般线性回归模型中未知参数的参数估计方法,并推广其应用。 其主要涉及:普通累积和的概念及其统计特征,普通累积法及其估计理论(包括普通累积法估计与二乘估计、普通累积法估计法与工具变量法等知识的介绍),一元线性回归模型中普通累积法估计与二乘估计,多元线性回归模型中普通累积法估计与二乘估计,多级普通累积法的估计法和普通累积法估计法在联立方程组模型参数估计方面的推广等内容。
本书以版Matlab为平台,介绍了数值分析与图形可视化的内容。涉及Matlab介绍、数值分析的数学基础、数值分析在工程、科学和数学问题中的应用以及Matlab绘图等内容。本书重点讲述数值分析的思想和原理并图示其结果,尽可能避免过深的数学理论和过于繁杂的算法细节,有助于读者更有效地利用Matlab的功能,来处理科学计算问题。 本书可作为各科学和工程专业本科生或研究生的教材或参考书,也可作为科技人员和计算机爱好者的参考工具书。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中最近兴起的粒子群算法处理多目标问题的理论方法与应用示例。 本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性