《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
《MSastran动力分析指南》介绍MSastran软件在动力学领域的基本理论和使用方法。内容包括动力学分析方法及Nastran基本功能介绍,模态分析,频率响应分析,瞬态响应分析,响应谱与响应分析,复特征值分析,使用超单元算法的正则模态分析,动力学建模选项,非线性正则模态,动力优化设计,试验一分析的相关性,动力学设计分析方法DDAM,噪声分析,非线性求解序列SOL 400、隐式非线性求解序列SOL 600、显式非线性求解序列SOL 700的基本理论、求解方法及其在动力学分析中的应用。《MSastran动力分析指南》配有详细的实例操作说明,所选实例均使用MSC Patran作为前后处理器来创建分析模型和进行分析结果评估。《MSastran动力分析指南》配套光盘中含有实例的相关源文件,以供学习之用。
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答, 部分题目还给出了多种解法. 内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
全国竞赛组委会数年来先后出版的获奖作品选编不益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国大学生电子设计竞赛组委会编著的《2011年全国大学生电子设计竞赛获奖作品选编》仅编入了2011年全国大学生电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均附有“专家点评”。
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。