《怎样解题:数学思维的新方法》经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了《怎样解题:数学思维的新方法》的甜头,他们在《怎样解题:数学思维的新方法》的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《怎样解题:数学思维的新方法》这本经久不衰的畅销书出自一位 数学家 G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《数学与人文》的首卷本登载了对主编的访谈,他们对本丛书的宗旨做了很详细的阐述。 在首卷本的“数学科学”、“数学星空”、“数海钩沉”、“数学魅力”、“数学教育”等栏目中,讲述了中外数学史和众多名家的生动故事、趣闻轶事,介绍了数学教学和学术研究中的经验体会,让读者看到了数学的趣味性、严谨性和它的无处不在。 《数学与人文》的创版适逢新中国成立60周年大庆,所以在首卷本中设立了新中国60年数学发展的专题。其中刊登了丘成桐教授撰写的“中国高等教育”一文,他从一个数学大师的角度纵横古今地畅谈了他所理解的中国高等教育的发展、现况、问题和展望;回顾了改革开放以来的中国数学会,讲述了国际数学家大会在我国召开的曲折过程;还介绍了三个数学分支(代数,数论,调和分析)的发展。 我们期望本丛书能受到广大学生和
本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。
本书为“专题史系列”之一。中国传统数学有着悠久历史,是中国传统科学文化百花园中的一朵奇葩,也是世界文化宝库中一颗璀璨的明珠。 本书分先秦至汉唐、宋辽金元、清中叶和清末等历史时期,分述算学家生平和自《九章算术》以迄《致曲术》等主要算学著作的内容,然后分数字与记数法、算具与算术、数的概念的扩展、几何问题与勾股测量、高次方程数值解法、天元术和四元术、高阶等差数列、同余式理论、八卦与幻方等方面叙述中国传统算学理论和计算方法等进行了叙述。同时,也叙及中国古代的算学教育和中外数学交流以及中国现代数学研究的发端。最后,对中国传统数学的基本特征作了概括性的探讨。
《模糊集理论及其应用》系统介绍了模糊集理论及其应用的基本知识和研究方法.全书共分三个部分。部分详细介绍模糊集合的基本理论;第二部分系统介绍了模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与预测、模糊规划、模糊概率和模糊统计等研究领域的基本原理、研究方法及其应用程序;第三部分介绍模糊推理的基本理论与算法,以及模糊控制系统的基本原理。 《模糊集理论及其应用》可作为高等院校数学类本科生,以及经济类、管理类、机械类、计算机科学类、信息科学类等专业高年级本科生和研究生的教材,也可作为工程技术人员的参考书。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。
《开来学于今:复杂性科学纵横论》按照作者的观点,复杂性科学并非一门学科,而是一个庞大学科群,代表整个科学作为系统的一种新的历史形态。所以,作为一本论述复杂性科学的书,不能像信息科学或控制理论那样阐释它的基本概念,建立理论框架,只能是总论性质的,即从科学、科学学、科学哲学、科学史等不同角度探讨复杂性科学蕴育和产生的社会背景、历史条件、发展现状、存在问题和可能走向,除了基本概念的阐释,更应从它的认识论、方法论、逻辑工具、思维方式等方面对一些争论和热点问题展开论述。故名之日纵横论,或日概览,概略观览是也。虽为概览,却也耗尽了我这几年的精力。效果如何,敬候阅者批评。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
概率论与数理统计是大学理工科的主要基础课程之一,也是硕士研究生入学考试的一门重要课程。编写本书的目的是帮助读者正确理解和掌握一些基本概念与解题方法以提高学习效率,并为学生提供一份课外复习资料。蒋家尚主编的这本《概率论与数理统计习题课教程》的内容体系参照了浙江大学盛骤等编写的《概率论与数理统计》,适用于各类各层次的概率论与数理统计学习者,对报考硕士研究生的读者亦有的帮助,也可作为教师的教学参考用书。
项目管理作为一门学科和一种管理方法最早出现在20世纪40年代的美国,它是伴随着实施和管理大型项目的需要而产生的。项目管理由于其独特的管理模式、管理方法和管理理念,可以有效地提高项目投资的效率,保障项目在预算范围按时完成和提高项目的质量,以及在预防和控制风险等诸多方面起到至关重要的作用。项目管理已成为了国际上管理中的两大基本管理模式之一。 《普通高等学校教材:管理数量方法》是为适应高等教育自学考试的特点,适应以职业为导向的专业课程体系编写的。从项目管理的专业课程,如项目成本管理、项目质量管理、项目风险管理、项目时间管理等,重点强调项目管理时刻关注的是质和量的统一,质是通过量表现出来的,质变是通过量变发生的,所以要了解事物的质就要把握事物的量。 《普通高等学校教材:管理数量方法
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》主要内容包括矩阵及其运算、行列式及其计算、矩阵的逆、Gramer法则、矩阵运算的实际案例分析、矩阵运算的Matlab实验,矩阵的初等变换与初等矩阵、向量的线性相关性、向量空间、向量的线性相关性的实际案例分析、向量的线性相关性的Matlab实验,线性方程组的相容性、齐次线性方程组、非齐次线性方程组、线性方程组实际案例分析、求解线性方程纽的Matlab实验、方阵的特征值与特征向量、矩阵的相似对角化、实对称矩阵的正交相似对角化、二次型及其标准型、正定矩阵与正定二次型、相似对角化与二次型标准化的实际应用案例分析、相似对角化的Matlab实验,线性空间的基本理论等。《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》理论叙述详细,例题丰
本书是编者总结多年的教学经验和教学研究成果、参考外若干教材,对《微积分教程》进行认真修订而成的。本书概念和原理的表述科学、准确、清晰、平易,语言流畅。例题和习题重视基础训练,丰富且有台阶、有跨度。为了方便教学与自学,在附录中给出了习题答案与补充题的提示与解答,并且补充了微积分概念和术语的索引。另外,在附录A中,按照“发现—猜测—验证—证明”的模式,指导读者以数学软件Mathematica为辅助工具,通过理论、数值和图形各方面的分析研究寻找问题的解答。这些问题紧密结合微积分教学和训练的基本要求,有助于培养学生分析和解决问题的能力。 本书分为上、下两册。上册包括实数和函数的基本概念和性质,极限理论和连续函数,一元函数微积分学,数项级数与函数项级数。下册包括多元函数微分学及其应用,重积分,曲线
《过程基础(原书第2版)》包括离散时间Markov链、Poisson过程、更新过程、连续时间Markov链、鞅和金融数学六章内容,涵盖了过程的核心知识点,涉及大量较新应用,书中内容完全以应用为导向,不涉及高深的理论证明或数学推导,极富思想性作者力求通过展示过程的实际应用来让学生学习这门学科,因此书中有大量的例子,还有200多道习题来加深读者对内容的理解。