全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
《自然哲学之数学原理》是一本划时代的科学巨著,是人类掌握的一个完整的科学的宇宙论和科学理论体系,其影响遍布经典自然科学的所有领域。本书对万有引力定律和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,成为现代工程学的基础。它标志着经典力学体系的建立。本书是人类科学史、思想史上的伟大著作。它不仅影响了人类几百年自然科学的研究,而且对人类的思维方式也产生过十分重要的影响。《自然哲学之数学原理》被法国科学家拉普拉斯评为 人类智慧的产物中卓越的杰作 。
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果与精神于一身。既是数学巨著,也是哲学巨著,并且*次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年*个印刷本出版,至今已有一千多种不同版本。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛能够与《几何原本》相比。汉语的*早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。 徐光启在译此作时,对该书有
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
《深度学习的数学》基于丰富的图示和具体示例,通俗易懂地介绍了深度学习相关的数学知识。第1章介绍神经网络的概况;第2章介绍理解神经网络所需的数学基础知识;第3章介绍神经网络的很优化;第4章介绍神经网络和误差反向传播法;第5章介绍深度学习和卷积神经网络。书中使用Excel进行理论验证,帮助读者直观地体验深度学习的原理。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《怎样解题:数学思维的新方法》这本经久不衰的畅销书出自一位 数学家 G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
二十世纪六十年代,我国 数学家华罗庚教授为推进数学知识的应用,首率先开展优选学、统筹学、经济数学的理论研究,并组织小分队先后到二十三个省、市、自治区结合我国的实际情况推广优选法、统筹法“双法”工作,“双法”成功地应用于化工、电子、冶金、煤炭、石油、电力、机械制造、交通运输、粮油加工、建材、医药卫生、环境保护、农林牧畜、国防工业和科学研究等方面,不仅在当时就取得了丰硕成果,而且成为后来我国系统科学与控制论研究的开端。本书是华罗庚教授经过深入生产 线进行“双法”推广之后,写出的一本数学知识与广大一线生产实践相结合,深入浅出的“平话”。