激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
《二阶椭圆型偏微分方程(第二版修订版)》主要阐述二阶拟线性椭圆型偏微分方程的一般理论以及为此而必需的线性理论,着重于有界区域上的DirichIet问题。书中的内容源于作者在斯坦福大学为研究生课程所写的讲义,但大大超出了这些课程的范围,并包括了位势理论、泛函分析等预备性章节;第二版修订版增加了Nikolai Krylov的导数Holder估计的相关内容,这—估计提供了椭圆型(和抛物型)高维完全非线性方程的古典理论进一步发展的基本要素。《二阶椭圆型偏微分方程(第二版修订版)》是一本自封闭的严谨的教学参考书,适合相关专业的研究生和高年级本科生阅读,也可供其他科技工作人员参考。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
《数学分析的思想与方法》通过多角度、深层次、全方位地探讨了数学分析学科的思想方法,全书共分为六部分:部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第二部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第三部分对数学分析内容体系中所蕴含的哲学思想进行了挖掘与分析;第三部分通过大量的事例对数学分析内容中所常用的数学思想进行了举例与分析;第四部分对数学美与数学分析中的美学思想进行了论述与分析;第五部分对微积分创立过程中数学家的思想和方法进行了整理与分析;最后一部分以附录的形式将古代数学家解决问题的方法进行了举例与说明。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
本书是为面向21世纪课程教材、普通高等教育“九五”*重点教材《工科数学分析基础》(王绵森、马知恩主编)而编写的,可以作为普通高等学校高等数学和微积分课程的教学辅导书,是在校大学生和任课教师的参考书。本书分为上、下两册,上册内容包括映射、极限、连续,一元函数微分学及其应用,一元函数的积分学及其应用,无穷级数。本书对《工科数学分析基础》的知识要点作了提纲挈领式的归纳,对习题作了全面的解答(题前标有符号“·”),并补充了部分典型例题,这些对读者提高数学素养和知识内涵、提高数学思维和运算能力是十分有益的。本书是使每个读者都能感受到开卷有益的一本好书。
本书是学习数学分析课程的一本极好的辅导书,本书的内容与一般的数学分析教材同步,分为上、下两册。本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及其应用、向量函数微分学、重积分及曲线积分与曲面积分。本书用大量篇幅详尽地分析和解答了在学习数学分析课程中可能出现的概念和方法上的种种疑难问题,用众多典型的、多样的例题为读者诠释概念、演绎技巧、举证方法,力图使读者通过学习本书能领会数学分析思想的精髓,掌握数学分析的方法,熟悉解决问题的途径与技巧。它将使你体会“开卷有益”这句名言。 相信本书将成为你的良师益友。欢迎你选用本系列丛书。
今年是恩师郭柏灵院士70寿辰,华南理工大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于l985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。
数值分析的若干问题与方法介绍数值分析的若干问题与新方法,是作者对近年来数值计算方法研究工作的系统整理和总结。其主要内容包括:高精度数值积分公式的构造及加速;数值积分公式的对偶公式;Cotes校正公式及其误差估计;数值积分的Monte Carlo方法;改进数值积分公式的两种新策略;高精度数值积分公式的重构及渐近性;数值积分公式误差的X优估计;一类含中介值定积分等式证明题的构造;数值微分公式的构造及其应用;Newton迭代公式的改进等。本书可供计算数学工作者、从事科学与工程计算的科研人员,以及相关专业的研究生和本科高年级学生参考。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
本书是以作者多年来为天津大学非数学类专业博士生讲授非线性数学课程的讲义为基础编写而成,内容包括:空间结构与映射、非线性泛函分析和现代变分法的基础、非线性动力系统基础知识、分岔与奇异性理论以及混沌和分形的基础知识。 本书注重相关概念和理论之间的联系,保持了较严谨的数学体系,将学习非线性理论基础知识与提高现代数学修养这两个目的有机结合,可供高等院校非数学类专业博士生或对数学要求较高的硕士生选用部分或全部内容作为教材或教学参考书,也可供有关教师或科技工作者参考。
本书是对华东师范大学数学系所编写的、高等教育出版社出版的《数学分析》(第三版)下册全部习题的详解。为便于学生学习,在每章的习题解答之前,增加了知识要点部分,此部分不是对该章主要内容的罗列,而是帮助学生从更高的观点上来理解该章的主要内容,分析理论作用,指出各概念,各定理的相互关联等,并指导解题方法,提示注意事项等。习题详解部分则周密、细致、规范,富有启发性,注意解题方法及技巧的运用,能给学生起到举一反三的作用。本书可供学生学习数学分析课程参考。
本书全面、系统地介绍了矩阵论的基本理论、运算方法及其应用。全书分八章,前四章突出基础理论,重点介绍线性空间与线性变换,欧氏空间与酉空间,Jordan标准形,向量与矩阵的范数理论。后四章侧重应用,学习矩阵的分析运算,特征值的估计,广义逆矩阵在解线性方程组中的应用,矩阵直积在解矩阵方程及矩阵微分方程中的应用。每章配有相应的习题,书末给出答案与提示。附录中给出哈工大研究生矩阵分析2007 2012年考试试题及参考答案。本书力求行文流畅,例题详实,推论严谨,深入浅出,旨在提高工科研究生的数学修养和自学能力。
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
本书主要介绍非线性自适应逆控制的原理和构成非线性自适应逆控制的各个环节:用各种可辨识非线性系统模型构成的非线性自适应滤波器;非线性自适应正建模和逆建模;非线性自适应逆系统的性能控制和扰动控制结构及基本工作原理。后,给出非线性自适应逆控制系统的综合控制结构及工作原理,并将其应用于混饨控制与同步中去。 本书是一本非线性系统自适应逆控制的专著,它综合了当前非线性建模和逆建模中的先进方法,并将其应用到非线性自适应逆控制之中。书中语言通俗易懂,可作为高等院校有关专业的硕士生和博士生选修课教材或参考书;也可作为愿意学习这方面知识的读者的入门书;还可供工作在非线性控制领域的工程技术人员参考。
吉米多维奇的《数学分析习题集》是一部著名的、很有代表性的习题集。编者根据我国目前的教学实际情况,选编了其中约三分之一的重要习题,并作了详细解答,分上、下两册出版。本书覆盖了该习题集各章节的主要内容,便于读者由厚到薄、由少而精地掌握该习题集内容,这对学习理科数学分析或工科高等数学(即微积分)的读者将大有裨益。 本书有很强的可读性,并兼顾多方需要,适合理、工科等的本、专科各专业教、学数学分析或高等数学(微积分)的师生作为教学参考书。
本书主要介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念、所谓“线性泛函的原理”即:Hahn-Banach定理、开映象与闭图像定理以及共鸣定理(一致有界原理),Hilbert空间的基本内容,的可分空间(改范)等价于C[a,b]以及严格凸空间,(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。本书的创新之处在于把赋范空间、赋准范空间和赋拟范空间结合起来进行深入讨论(特别是创造了许多有趣的反例说明它们的差异点)。 本书适合高校数学专业师生及相关专业科研人员阅读参考。
《生存数据统计分析》主要系统介绍生存分布函数估计、概率密度估计、失效率估计、包含平均寿命作为特例的一类均值泛函估计及其统计性质,介绍与之相关的统计方法(如鞅重抽样方法、估计方程方法、点过程鞅方法、经验似然方法等)及有关的应用成果;介绍两样本检验及处理差异统计推断方法,介绍随机删失回归分析及比例风险回归统计推断方法、理论及应用。
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。 本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书