《数学分析中的问题、方法与实践》由陈汝栋主编,分问题篇、方法篇和实践篇3部分。问题篇包含了数学分析中概念理解、方法使用中的254个问题的错误解析,有些问题还是比较深刻的;方法篇包含了数学分析中的常用方法和技巧,分证明方法和计算方法分别予以提炼和总结,并配以精选的例子;实践篇包含数学分析中的部分理论、方法在实际问题中的应用和近年来部分研究生招生的数学分析试题,特别是最后针对近年来各种教材习题解答的泛滥,按照高等教育出版社出版的复旦大学《数学分析》第三版的顺序,重新选择并改编了习题,以克服同学们抄习题解答的不良习惯。我们也期望任何人不要为本习题集出版解答书籍,以便为同学们学好数学分析提供一个良好的环境。《数学分析中的问题、方法与实践》可作为高等学校理科数学系学生学习数学分析的参考书和
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解, 并学会掌握数学分析的精髓。 本书虽是给那些想提高自己数学分析水平的工程师写的, 但对于经济学家、数学教师、数学系的学生等, 都具有非凡意义。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书是与华东师范大学数学系编《数学分析》(第三版,下册)配套的学习指导书,主要是作为学习本课程的学习课后复习和提高之用。本书按节编写,每节包含:内容提要、释疑解惑、范例解析、习题选解,每章后附有总练习题提示和解答(解答部分约占50%)及测试题。本书切合实际,注意提高学生对数学分析基本概念、基本定理、基本计算技巧的理解和应用,可作为师范院校或其他类型数学专业学生使用,对教师也有的参考价值。
本书从模糊系统的基本理论与方法、多种模糊辨识方法及算法逼近性能分析、实际应用等方面,阐述了近年来非线性系统模糊模型辨识方面的研究成果。内容包括:非线性系统模糊建模与模糊辨识理论基础;模糊系统逼近理论分析;基于模糊划分的非线性系统模糊辨识;基于模糊聚类的模糊辨识;基于数据预处理的模糊辨识;隶属函数对模糊模型描述性能的影响及模糊去噪原理;并以递阶智能控制、模糊模型预测控制、光伏电站铅酸蓄电池建模、电力系统短期负荷预测、智能陶瓷材料性能预测等为背景,介绍模糊模型辨识的应用。本书取材新颖、广泛,结合实际,反映了这一领域近年来所取得的进展。 本书适宜控制科学与工程、模式识别与人工智能、系统工程和管理科学与工程等专业的科技人员阅读,也可供高等院校相关专业的师生参考。
本书包含七章。章从Lebesgue测度和Lebesgue积分出发介绍抽象测度和抽象积分,以及可测函数的连续性;第二章介绍LP空问及其可分性和对偶空间,以及用连续函数逼近LP空间元素;第三章介绍Hilbert空间上线性变换的表示,Hilbert空间中的规范正交系;作为例子,本章还介绍了三角级数,它是逼近论、小波分析的基础,另外,作为Riesz表示定理的应用之一,这里还介绍了广义测度的有关知识(这部分可作为选讲内容);第四章主要讨论n维欧氏空间上的Fourier变换的概念及基本性质,以及Fourier变换在偏微分方程中的应用;第五章微分学是将数学分析中函数的微分概念推广到映射和测度中去,分别介绍了映射的导数、偏导数及高阶导数和测度的导数;第六章介绍Banach空间中的五大定理;最后一章介绍了广义函数。
本书是作者在长期从事数学分析教学的基础上写成的,也是数学分析基本概念、基本定理及各类M题常用与典型方法的一个总结。书中对数学分析的内容按知识点进行整合,对各个重要知识点进行了系统讲解和辨析,对近些年来一些重点高校的典型考研试题进行了独到的分析和讨论,使得整个数学分析所涉及的知识结构更加清晰。 全书共17讲,每一讲都系统总结了相关知识点,并给出了一系列典型M题和解题方法。读者可从这些方法中加深对数学分析概念的理解,达到开阔思路、提高解题能力的目的。
郑慧娆、陈绍林、莫忠息、黄象鼎编著的《数值计算方法(第2版)》是为高等学校信息与计算科学专业编写的教材。内容包含求解线性方程组的数值方法、求解非线性方程的二乘方法、矩阵特征值问题的数值方法、插值、逼近、数值积分、常微分方程的数值解法。作为教材,书中叙述较为详细,便于学生自学复习。其中一部分为可选择的内容,以满足不同学生的需要。对于数学、应用数学、计算机科学等专业相应的课程,同样可以选择《数值计算方法(第2版)》部分内容作为教材。
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。 本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过最简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。 本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。