全书共分成8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射、狄利克雷问题、椭圆函数以及全局解析函数。此外,大部分章节后都有练习,便于学生掌握书中内容,其中加上“*”号的练习供学有余力的学生选做。本书假定读者具备大学二年级的数学基础,可作为高等院校高年级本科生以及研究生的教材和参考书。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。 全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。 本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。 全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。 本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。
《高校核心课程学习指导丛书:数学分析范例选解》通过一些特别挑选的范例(约240个题或题组)和配套习题(约220个题或题组)来提供数学分析习题的某些解题技巧,涉及基础性和综合性两类问题,题目总数近1000个,题目选材范围比较广泛,范例解法具有启发性和参考价值,所有习题均附解答或提示。